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Motivation

An information acquisition problem:

maximize
(decision rule, experiment)

[benefit − cost]

• Decision rule: signal-dependent actions

• Experiment: state-dependent signal distributions

• Benefit: ex ante expected payoff w/ information

• Cost: money/time/fatigue to generate/process information

2/24



Motivation

An information acquisition problem:

maximize
(decision rule, experiment)

[benefit − cost]

• Decision rule: signal-dependent actions

• Experiment: state-dependent signal distributions

• Benefit: ex ante expected payoff w/ information

• Cost: money/time/fatigue to generate/process information

2/24



Motivation

An information acquisition problem:

maximize
(decision rule, experiment)

[benefit − cost]

• Decision rule: signal-dependent actions

• Experiment: state-dependent signal distributions

• Benefit: ex ante expected payoff w/ information

• Cost: money/time/fatigue to generate/process information

2/24



Objective

• Axiomatic model of costly information acquisition

◦ Bayesian dm + information cost

• Primitive: ¥ over (decision rule, experiment)

• Characterize several models that differ in cost structures:

◦ Today: 1. general 2. posterior separable
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1 Model 2 Characterization 3 Summary



Primitives

• ℰ: set of experiments 𝑒 : 𝛺 → Δ(𝑆), 𝜔 ↦→ 𝑒𝜔

◦ 𝛺: finite set of states

◦ 𝑆: Polish space of signals

◦ supp 𝑒 ≡ ⋃
𝜔∈𝛺 supp 𝑒𝜔

• 𝒟: set of decision rules 𝛿 : ℰ × 𝑆 → ℋ, (𝑒, 𝑠) ↦→ 𝛿𝑒𝑠

◦ ℋ: set of (AA) acts ℎ : 𝛺 → Δ(𝑋), 𝑋 : set of outcomes

◦ Identify ℎ ∈ ℋ with constant decision rule (𝑒, 𝑠) ↦→ ℎ

• ¥: preference over strategies (𝛿, 𝑒) ∈ 𝒟 × ℰ
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Timeline

1. dm chooses a strategy—(decision rule, experiment)

2. A signal arrives & dm updates her belief

3. An act is chosen

4. A state is resolved & dm receives a payoff
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Payoffs

• 𝑢 : Δ(𝑋) → ℝ: vNM function

◦ nonconstant & mixture linear

• 𝑟𝑢𝜔 : 𝒟 × ℰ → ℝ: state-dependent reward function

𝑟𝑢𝜔 (𝛿, 𝑒) =
∫
𝑢(𝛿𝑒𝑠 (𝜔)) d𝑒𝜔 (𝑠) = 𝑢

(∫
𝛿𝑒𝑠 (𝜔) d𝑒𝜔 (𝑠)

)
= 𝑢((𝛿 ∗ 𝑒)𝜔)

where

𝛿 ∗ 𝑒 ≡
(∫

𝛿𝑒𝑠 (𝜔) d𝑒𝜔 (𝑠)
)
𝜔∈𝛺

(the induced act by (𝛿, 𝑒))
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Cost of information

Definition

An (information) cost function is any continuous 𝑐 : ℰ → ℝ+ s.t.

1. 𝑒 ≽B 𝑓 =⇒ 𝑐(𝑒) ≥ 𝑐( 𝑓 );

2. 𝑐(𝑒0) = 0 for each uninformative 𝑒0 ∈ ℰ.

• Topology over experiments is induced by distr. over posteriors

◦ Topology is prior-independent

• ≽B: Blackwell order on ℰ

• 𝑒0 is uninformative
def⇐⇒ 𝑒0𝜔 = 𝑒0𝜔′ ∀(𝜔, 𝜔′) ∈ 𝛺2
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Aggregators

Definition

An aggregator is any continuous𝑊 : 𝑇 × 𝐾 → ℝ s.t.

• 𝑇 and 𝐾 are real intervals;

• 𝑊 (·, 𝑘) is increasing for each 𝑘 ∈ 𝐾 ;

• 𝑊 (𝑡, ·) is decreasing for each 𝑡 ∈ 𝑇 .

• Additive aggregator: (𝑡, 𝑘) ↦→ 𝑡 − 𝑘

• Multiplicative aggregator: (𝑡, 𝑘) ↦→ e−𝑘𝑡

9/24



Utility representation

Definition

A costly information acquisition representation of ¥ is ⟨𝑢, 𝜇, 𝑐,𝑊⟩ s.t.

• 𝑢 is a vNM function;

• 𝑐 is a cost function;

• 𝜇 is a full support prior;

• 𝑊 is an aggregator;

• ¥ is represented by

𝑉 (𝛿, 𝑒) =𝑊
(∫

𝑟𝑢𝜔 (𝛿, 𝑒) d𝜇(𝜔), 𝑐(𝑒)
)
.
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Posterior separability

Definition

A posterior separable representation of ¥ is ⟨𝑢, 𝜇, 𝐻⟩ s.t.

• 𝑢 is a vNM function;

• 𝐻 is a convex function on Δ(𝛺);

• 𝜇 is a full support prior;

• ¥ is represented by

𝑉 (𝛿, 𝑒) =
∫
𝑟𝑢𝜔 (𝛿, 𝑒) d𝜇(𝜔) − 𝑐(𝑒),

𝑐(𝑒) =
∫
𝐻 (𝜇𝑒𝑠 ) d𝑒𝜇 (𝑠) − 𝐻 (𝜇).
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1 Model 2 Characterization 3 Summary



Axioms

A1—Regularity

¥ is nondegenerate, complete, transitive, and continuous.

• Topology over strategies:

Two strategies are “close” ⇐⇒

the induced acts and experiments are “close”
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A2—Statewise dominance

For each ((𝛿, 𝛾), 𝑒) ∈ 𝒟2 × ℰ,

1. 𝛿 ≥𝑒D 𝛾 =⇒ (𝛿, 𝑒) ¥ (𝛾, 𝑒);

2. 𝛿 >𝑒D 𝛾 =⇒ (𝛿, 𝑒) ≻ (𝛾, 𝑒).

• 𝛿 ≥𝑒D 𝛾 ⇐⇒ ((𝛿 ∗ 𝑒)𝜔, 𝑒) ¥ ((𝛾 ∗ 𝑒)𝜔, 𝑒) ∀𝜔 ∈ 𝛺

• 𝛿 >𝑒D 𝛾 ⇐⇒ 𝛿 ≥𝑒D 𝛾 & ((𝛿 ∗ 𝑒)𝜔, 𝑒) ≻ ((𝛾 ∗ 𝑒)𝜔, 𝑒) ∃𝜔 ∈ 𝛺
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A3—Information monotonicity

For each ((𝛿, 𝛾), (𝑒, 𝑓 )) ∈ 𝒟2 × ℰ2, if

𝛿 ∗ 𝑒 = 𝛾 ∗ 𝑓 and 𝑓 ≽B 𝑒,

then (𝛿, 𝑒) ¥ (𝛾, 𝑓 ).

• More informative =⇒ more costly
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A4—Cost consistency

For each ((𝛿, 𝛿, 𝛾, �̃�), (𝑒, 𝑓 )) ∈ 𝒟4 × ℰ2, if

𝛿 ∗ 𝑒 = 𝛾 ∗ 𝑓 and 𝛿 ∗ 𝑒 = �̃� ∗ 𝑓 and (𝛿, 𝑒) ¥ (𝛾, 𝑓 ),

then (𝛿, 𝑒) ¥ (�̃�, 𝑓 ).

• Cost does not depend on decision rules
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Matrix notation of experiments

Let 𝛺 = {1, . . . , 𝑚}

If 𝑒 ∈ ℰ satisfies supp 𝑒 = {𝑠1, . . . , 𝑠𝑛}, then

𝑒 ≃


𝑒1(𝑠1) · · · 𝑒1(𝑠𝑛)
...

. . .
...

𝑒𝑚 (𝑠1) · · · 𝑒𝑚 (𝑠𝑛)


,

𝑛∑︁
𝑖=1

𝑒𝜔 (𝑠𝑖) = 1, 𝑒𝜔 (𝑠𝑖) ≥ 0

• 𝑒 is identified w/ a row stochastic matrix
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Concatenation of experiments

• If supp 𝑒 ∩ supp 𝑓 = ∅,

𝜆-mixture of 𝑒 and 𝑓 = “𝜆-concatenation of 𝑒 and 𝑓 ”

• In matrix notation, if supp 𝑒 = {𝑠1, . . . , 𝑠𝑛} and supp 𝑓 = {𝑠1, . . . , 𝑠𝑘},

𝜆𝑒 + (1 − 𝜆) 𝑓 ≃
[
𝜆𝑒 (1 − 𝜆) 𝑓

]
=


𝜆𝑒1(𝑠1) · · · 𝜆𝑒1(𝑠𝑛) (1 − 𝜆) 𝑓1(𝑠1) · · · (1 − 𝜆) 𝑓1(𝑠𝑘)

...
. . .

...
...

. . .
...

𝜆𝑒𝑚 (𝑠1) · · · 𝜆𝑒𝑛(𝑠𝑛) (1 − 𝜆) 𝑓𝑚 (𝑠1) · · · (1 − 𝜆) 𝑓𝑚 (𝑠𝑘)
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A5—Equivalent concatenation independence

For each (𝜆, 𝛿, (𝑒, 𝑒′, 𝑓 )) ∈ (0, 1] ×𝒟inv × ℰ3 w/

𝑒 ∼B 𝑒
′ and (supp 𝑒 ∪ supp 𝑒′) ∩ supp 𝑓 = ∅,

(𝛿, 𝑒) ¥ (𝛿, 𝑒′) ⇐⇒ (𝛿, 𝜆𝑒 + (1 − 𝜆) 𝑓 ) ¥ (𝛿, 𝜆𝑒′ + (1 − 𝜆) 𝑓 ).

• 𝒟inv: set of invariant decision rules

◦ 𝛿𝑒𝑠 = 𝛿
𝑓
𝑠 for each ((𝑒, 𝑓 ), 𝑠) ∈ ℰ2 × 𝑆

• 𝑒 ∼B 𝑒
′ =⇒ 𝜆𝑒 + (1 − 𝜆) 𝑓 ∼B 𝜆𝑒

′ + (1 − 𝜆) 𝑓 under support disjointness

• Mixture affects only on induced acts
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Theorem 1

¥ satisfies A1–A5 ⇐⇒

¥ has a costly information acquisition representation.

• A1—Regularity

• A2—Statewise dominance

• A3—Information monotonicity

• A4—Cost consistency

• A5—Equivalent concatenation independence
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Posterior separable representation

Theorem 3

¥ satisfies A1–A3 & A6 ⇐⇒ ¥ has a posterior separable representation.

A6—Concatenation independence

For each (𝜆, 𝛿, (𝑒, 𝑒′, 𝑓 )) ∈ (0, 1] ×𝒟inv × ℰ3 w/

𝑒 ∼B 𝑒
′ and (supp 𝑒 ∪ supp 𝑒′) ∩ supp 𝑓 = ∅,

(𝛿, 𝑒) ¥ (𝛿, 𝑒′) ⇐⇒ (𝛿, 𝜆𝑒 + (1 − 𝜆) 𝑓 ) ¥ (𝛿, 𝜆𝑒′ + (1 − 𝜆) 𝑓 ).

• A6 says signal-wise separability + separability of benefit and cost

• Cost consistency is implied by the other axioms
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1 Model 2 Characterization 3 Summary



Summary

This paper characterizes

• Bayesian dm + costly information acquisition

• Bayesian dm + a posterior separable cost
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