Experiments, decision rules, and costly information acquisition

Yutaro Akita

Penn State

July 16, 2025

MOTIVATION

An information acquisition problem:

MOTIVATION

An information acquisition problem:

maximize [benefit - cost] (decision rule, experiment)

- Decision rule: signal-dependent actions
- Experiment: state-dependent signal distributions

MOTIVATION

An information acquisition problem:

maximize [benefit - cost] (decision rule, experiment)

- Decision rule: signal-dependent actions
- Experiment: state-dependent signal distributions
- Benefit: ex ante expected payoff w/ information
- Cost: money/time/fatigue to generate/process information

OBJECTIVE

- Axiomatic model of costly information acquisition
 - Bayesian DM + information cost

OBJECTIVE

- Axiomatic model of costly information acquisition
 - Bayesian DM + information cost
- Primitive: ≿ over (decision rule, experiment)
- Characterize several models that differ in cost structures:
 - Today: 1. general 2. posterior separable

PRIMITIVES

- \mathscr{C} : set of *experiments* $e: \Omega \to \Delta(S), \ \omega \mapsto e_{\omega}$
 - Ω : finite set of *states*
 - S: Polish space of *signals*
 - $\operatorname{supp} e \equiv \bigcup_{\omega \in \Omega} \operatorname{supp} e_{\omega}$

PRIMITIVES

- \mathscr{C} : set of *experiments* $e: \Omega \to \Delta(S), \ \omega \mapsto e_{\omega}$
 - Ω : finite set of *states*
 - S: Polish space of *signals*
 - $\operatorname{supp} e \equiv \bigcup_{\omega \in \Omega} \operatorname{supp} e_{\omega}$
- \mathfrak{D} : set of *decision rules* $\delta \colon \mathscr{C} \times S \to \mathscr{H}$, $(e, s) \mapsto \delta_s^e$
 - \mathscr{H} : set of (**AA**) *acts* $h: \Omega \to \Delta(X)$, X: set of outcomes
 - Identify $h \in \mathcal{H}$ with constant decision rule $(e, s) \mapsto h$

PRIMITIVES

- \mathscr{C} : set of *experiments* $e: \Omega \to \Delta(S), \ \omega \mapsto e_{\omega}$
 - Ω : finite set of *states*
 - S: Polish space of *signals*
 - $\operatorname{supp} e \equiv \bigcup_{\omega \in \Omega} \operatorname{supp} e_{\omega}$
- \mathfrak{D} : set of *decision rules* $\delta \colon \mathscr{C} \times S \to \mathscr{H}$, $(e, s) \mapsto \delta_s^e$
 - \mathscr{H} : set of (**AA**) *acts* $h: \Omega \to \Delta(X)$, X: set of outcomes
 - Identify $h \in \mathcal{H}$ with constant decision rule $(e, s) \mapsto h$

• \succeq : preference over *strategies* $(\delta, e) \in \mathfrak{D} \times \mathscr{C}$

1. DM chooses a strategy—(decision rule, experiment)

- 1. DM chooses a strategy—(decision rule, experiment)
- 2. A signal arrives & DM updates her belief

- 1. DM chooses a strategy—(decision rule, experiment)
- 2. A signal arrives & DM updates her belief
- 3. An act is chosen

- 1. DM chooses a strategy—(decision rule, experiment)
- 2. A signal arrives & DM updates her belief
- 3. An act is chosen
- 4. A state is resolved & DM receives a payoff

PAYOFFS

- $u: \Delta(X) \rightarrow \mathbb{R}: vNM$ function
 - nonconstant & mixture linear

PAYOFFS

- $u: \Delta(X) \rightarrow \mathbb{R}: vNM$ function
 - nonconstant & mixture linear
- $r^{u}_{\omega}: \mathfrak{D} \times \mathscr{C} \to \mathbb{R}$: state-dependent *reward function*

$$r^{u}_{\omega}(\delta, e) = \int u(\delta^{e}_{s}(\omega)) \,\mathrm{d}e_{\omega}(s)$$

PAYOFFS

- $u: \Delta(X) \rightarrow \mathbb{R}: vNM$ function
 - nonconstant & mixture linear
- $r^{u}_{\omega}: \mathfrak{D} \times \mathscr{C} \to \mathbb{R}$: state-dependent *reward function*

$$r_{\omega}^{u}(\delta, e) = \int u(\delta_{s}^{e}(\omega)) \, \mathrm{d}e_{\omega}(s) = u\left(\int \delta_{s}^{e}(\omega) \, \mathrm{d}e_{\omega}(s)\right) = u((\delta * e)_{\omega})$$

where

$$\delta * e \equiv \left(\int \delta_s^e(\omega) \, \mathrm{d} e_\omega(s) \right)_{\omega \in \mathcal{Q}}$$

(the *induced act by* (δ, e))

COST OF INFORMATION

Definition

An (*information*) *cost function* is any continuous $c: \mathscr{C} \to \mathbb{R}_+$ s.t.

1. $e \succeq_{\mathrm{B}} f \implies c(e) \ge c(f);$

2. $c(e^0) = 0$ for each uninformative $e^0 \in \mathscr{C}$.

- Topology over experiments is induced by distr. over posteriors
 - Topology is prior-independent
- \succ_{B} : *Blackwell order* on \mathscr{C}
- e^0 is uninformative $\stackrel{\text{def}}{\longleftrightarrow} e^0_{\omega} = e^0_{\omega'} \quad \forall (\omega, \omega') \in \Omega^2$

AGGREGATORS

Definition

An *aggregator* is any continuous $W: T \times K \rightarrow \mathbb{R}$ s.t.

- *T* and *K* are real intervals;
- $W(\cdot, k)$ is increasing for each $k \in K$;
- $W(t, \cdot)$ is decreasing for each $t \in T$.
- Additive aggregator: $(t, k) \mapsto t k$
- Multiplicative aggregator: $(t, k) \mapsto e^{-k}t$

UTILITY REPRESENTATION

Definition

A costly information acquisition representation of \succeq is $\langle u, \mu, c, W \rangle$ s.t.

- *u* is a vNM function;
- *c* is a cost function;

- μ is a full support prior;
- W is an aggregator;

• \gtrsim is represented by

$$V(\delta, e) = W\left(\int r_{\omega}^{u}(\delta, e) \,\mathrm{d}\mu(\omega), c(e)\right).$$

POSTERIOR SEPARABILITY

Definition

A posterior separable representation of \succeq is $\langle u, \mu, H \rangle$ s.t.

- u is a vNM function; μ is a full support prior;
- *H* is a convex function on $\Delta(\Omega)$;
- \gtrsim is represented by

$$V(\delta, e) = \int r_{\omega}^{u}(\delta, e) \, \mathrm{d}\mu(\omega) - c(e),$$
$$c(e) = \int H(\mu_{s}^{e}) \, \mathrm{d}e_{\mu}(s) - H(\mu).$$

AXIOMS

A1—Regularity

 \succeq is nondegenerate, complete, transitive, and continuous.

• Topology over strategies:

Two strategies are "close" \iff

the induced acts and experiments are "close"

A2—Statewise dominance

For each $((\delta, \gamma), e) \in \mathfrak{D}^2 \times \mathfrak{C}$,

1. $\delta \geq_{\mathrm{D}}^{e} \gamma \implies (\delta, e) \succeq (\gamma, e);$

2. $\delta >^{e}_{\mathbb{D}} \gamma \implies (\delta, e) \succ (\gamma, e).$

•
$$\delta \geq_{\mathrm{D}}^{e} \gamma \iff ((\delta * e)_{\omega}, e) \succeq ((\gamma * e)_{\omega}, e) \quad \forall \omega \in \Omega$$

• $\delta >^{e}_{\mathrm{D}} \gamma \iff \delta \geq^{e}_{\mathrm{D}} \gamma \And ((\delta * e)_{\omega}, e) \succ ((\gamma * e)_{\omega}, e) \quad \exists \omega \in \Omega$

A3—Information monotonicity

For each $((\delta, \gamma), (e, f)) \in \mathfrak{D}^2 \times \mathscr{C}^2$, if

$$\delta * e = \gamma * f$$
 and $f \succeq_{\mathrm{B}} e$,

then $(\delta, e) \succeq (\gamma, f)$.

• More informative \implies more costly

A4—Cost consistency

For each $((\delta, \tilde{\delta}, \gamma, \tilde{\gamma}), (e, f)) \in \mathfrak{D}^4 \times \mathscr{C}^2$, if

$$\delta * e = \gamma * f$$
 and $\tilde{\delta} * e = \tilde{\gamma} * f$ and $(\delta, e) \succeq (\gamma, f)$,

then $(\tilde{\delta}, e) \succeq (\tilde{\gamma}, f)$.

Cost does not depend on decision rules

MATRIX NOTATION OF EXPERIMENTS

Let $\Omega = \{1, \ldots, m\}$

If $e \in \mathscr{C}$ satisfies supp $e = \{s_1, \ldots, s_n\}$, then

$$e \simeq \begin{bmatrix} e_1(s_1) & \cdots & e_1(s_n) \\ \vdots & \ddots & \vdots \\ e_m(s_1) & \cdots & e_m(s_n) \end{bmatrix}, \qquad \sum_{i=1}^n e_\omega(s_i) = 1, \quad e_\omega(s_i) \ge 0$$

• *e* is identified w/ a row stochastic matrix

CONCATENATION OF EXPERIMENTS

• If supp $e \cap \text{supp } f = \emptyset$,

 λ -mixture of *e* and $f = "\lambda$ -concatenation of *e* and f"

CONCATENATION OF EXPERIMENTS

• If supp $e \cap \text{supp } f = \emptyset$,

 λ -mixture of *e* and *f* = " λ -concatenation of *e* and *f*"

• In matrix notation, if supp $e = \{s_1, \ldots, s_n\}$ and supp $f = \{\tilde{s}_1, \ldots, \tilde{s}_k\}$,

$$\lambda e + (1 - \lambda)f \simeq \left[\lambda e \mid (1 - \lambda)f\right]$$
$$= \begin{bmatrix} \lambda e_1(s_1) & \cdots & \lambda e_1(s_n) \mid (1 - \lambda)f_1(\tilde{s}_1) & \cdots & (1 - \lambda)f_1(\tilde{s}_k) \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \lambda e_m(s_1) & \cdots & \lambda e_n(s_n) \mid (1 - \lambda)f_m(\tilde{s}_1) & \cdots & (1 - \lambda)f_m(\tilde{s}_k) \end{bmatrix}$$

A5—Equivalent concatenation independence

For each $(\lambda, \delta, (e, e', f)) \in (0, 1] \times \mathcal{D}_{inv} \times \mathscr{E}^3$ w/

 $e \sim_{\mathrm{B}} e'$ and $(\operatorname{supp} e \cup \operatorname{supp} e') \cap \operatorname{supp} f = \emptyset$,

$$(\delta, e) \succeq (\delta, e') \iff (\delta, \lambda e + (1 - \lambda)f) \succeq (\delta, \lambda e' + (1 - \lambda)f).$$

• \mathfrak{D}_{inv} : set of *invariant* decision rules

•
$$\delta_s^e = \delta_s^f$$
 for each $((e, f), s) \in \mathscr{C}^2 \times S$

• $e \sim_{\mathrm{B}} e' \implies \lambda e + (1 - \lambda) f \sim_{\mathrm{B}} \lambda e' + (1 - \lambda) f$

under support disjointness

Mixture affects only on induced acts

Theorem 1

- \gtrsim satisfies A1–A5 \iff
- \succeq has a costly information acquisition representation.
- A1—Regularity
- A2—Statewise dominance
- A3—Information monotonicity
- A4—Cost consistency
- A5—Equivalent concatenation independence

POSTERIOR SEPARABLE REPRESENTATION

Theorem 3

 \succeq satisfies A1–A3 & A6 $\iff \succeq$ has a posterior separable representation.

A6—Concatenation independence

For each $(\lambda, \delta, (e, e', f)) \in (0, 1] \times \mathcal{D}_{inv} \times \mathscr{C}^3$ w/

 $e \sim_{\mathbb{B}} e'$ and $(\operatorname{supp} e \cup \operatorname{supp} e') \cap \operatorname{supp} f = \emptyset$,

$$(\delta, e) \succeq (\delta, e') \iff (\delta, \lambda e + (1 - \lambda)f) \succeq (\delta, \lambda e' + (1 - \lambda)f).$$

- A6 says signal-wise separability + separability of benefit and cost
- Cost consistency is implied by the other axioms

SUMMARY

This paper characterizes

- Bayesian DM + costly information acquisition
- Bayesian Dм + a posterior separable cost

LITERATURE

• Preference over menus:

menu choice \rightarrow signal arrival \rightarrow choice from menu

de Oliveira (2014), de Oliveira · Denti · Mihm · Ozbek (2018),
Higashi · Hyogo · Takeoka (2025)

• Stochastic choice:

signal arrival \rightarrow choice from a menu \rightarrow stochastic choice

• Caplin · Dean (2015), Chambers · Liu · Rehbeck (2020), Denti (2022)

• Statistical decision:

• Furtado (2024)—same domain · no cost of information