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We provide a model of preferences over lotteries of acts in which a decision maker behaves as
if optimally filtering her ambiguity perception. She has a set of plausible ambiguity perceptions
and a cost function over them, and chooses multiple priors to maximize the minimum expected
utility minus the cost. We characterize the model by axioms on attitude toward randomization
and its timing, uniquely identify the filtering cost from observable data, and conduct several
comparatives. Our model can explain Machina’s (2009) two paradoxes, which are incompatible
with many standard ambiguity models.
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1. Introduction

1.1. Outline. Thought experiments introduced by Ellsberg (1961) suggest that ambiguity
influences decision making. The decision maker (dm) usually avoids actions whose outcomes
depend on ambiguous events. This avoidance is incompatible with having a single probabilis-
tic belief. Rather, under ambiguity, the dm considers multiple probabilities plausible, which
reflects the lack of information. At the same time, the dm may be able to filter her perception
of ambiguity to improve the decision. The filtering can be (physically or mentally) costly, so
she would avoid unnecessary filtering.

To be concrete, consider an entrepreneur choosing a business plan. She perceives ambiguity
regarding several factors that may affect the profitability of each plan (e.g., the future economic
trend, actions by rival companies, government policies, etc.). She can invest time and money
in research on those factors to make a more precise prediction. The entrepreneur, therefore,
must take into account the tradeoff between the potential benefits of a clearer forecast and
the costs of obtaining it.

Alternatively, consider an investor choosing between domestic and foreign assets. The
foreign asset is unfamiliar to the investor, but has the potential for a higher return. She tries
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to adopt an advantageous view on the foreign economic situation to mitigate the fear of the
unknown. The investor, in this case, adjusts the perception of fearful uncertainty at a mental
cost.

This paper proposes a decision-making model under ambiguity, the costly ambiguity
perception model, that captures the examples above. Ambiguity perceptions are represented
by sets of probabilities, and are associated with costs. Given an ambiguity perception, the dm
evaluates each prospect according to the maxmin expected utility (meu) model of Gilboa and
Schmeidler (1989); that is, the value of a prospect is the minimum expected utility among the
priors in the perception. The dm chooses her ambiguity perception to maximize the associated
meu value minus the cost.

Important behavioral implications of our model are on the attitude toward randomization
and its timing. First, the dm favors randomization happening after the state is realized
rather than before. To illustrate, consider a box containing 100 balls, each of which is either
red or blue with unknown composition. Let 𝑓red and 𝑓blue be the bets on the draw of the
corresponding color, whose stakes are $100 and $0. Take two lotteries that differ in the timing
of randomization. The first lottery 𝑝 randomizes the prizes of the bets ex post (after drawing
a ball): it pays $100 or $0, each with probability half, regardless of the color drawn. Since
ex post randomization reduces ambiguity to risk, the dm can hedge against uncertainty. In
the second lottery 𝑃, the randomization takes place ex ante (before drawing a ball): it is the
half-half lottery over 𝑓red and 𝑓blue. After resolving the randomization in 𝑃, the dm always
faces an ambiguous bet, so 𝑃 provides no hedge. By this difference in the hedging power, it is
conceivable that the dm prefers 𝑝 (ex post randomization) to 𝑃 (ex ante randomization).

Second, ex ante randomization can never be beneficial. Let 𝐴 be the event that the tem-
perature at Athens is greater than or equal to 20◦C, and let 𝐵 be the corresponding event
for the temperature at Beijing. For each 𝐸 ∈ {𝐴, 𝐵}, let 𝑓𝐸 be the bet on 𝐸 whose stakes are
$100 and $0, and let $𝑐𝐸 be the dm’s certainty equivalent of 𝑓𝐸. Also, consider the certainty
equivalent $𝑐𝑄 of the half-half lottery 𝑄 over 𝑓𝐴 and 𝑓𝐵. When facing 𝑓𝐴 (resp. 𝑓𝐵), the dm’s
task to filter her ambiguity perception is only on the temperature at Athens (resp. Beijing).
Instead, to evaluate 𝑄, she has to engage in filtering on both Athens and Beijing. Thus, ex
ante randomization makes the filtering task more difficult, which leads to 𝑐𝑄 ≤ max{𝑐𝐴, 𝑐𝐵}.
Those two properties are summarized as main axioms in our characterization.

Section 2 introduces the formal model. To model the two types of randomization (ex
ante and ex post), we follow the approach of Anscombe and Aumann (1963) and Ke and
Zhang (2020). We take as the primitive a preference over lotteries of acts (functions that
associate a risky prospect with an uncertain state). The utility representation is introduced in
Definition 1. It consists of a von Neumann–Morgenstern (vNM) function, a set of plausible
ambiguity perceptions, and a cost function on it, where the last two components constitute the
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dm’s cost structure of filtering. The utility of each lottery is the maximum of the expected meu
value minus the cost across plausible ambiguity perceptions. We offer several interpretations
of the representation, which describe the dm’s (physical or mental) process of optimization.

Section 3.1 provides an axiomatic foundation for the costly ambiguity perception model.
Attraction to ex post randomization and indifference to mixture timing of constant acts are
axioms that regulate the attitude toward the timing of randomization. They together state
that the dm prefers ex post to ex ante randomization when mixing two ambiguous acts, while
the timing does not matter when mixing with constant acts. Ex ante aversion to randomization
and independence of constant acts control the attitude toward ex ante randomization. Under
them, the dm is averse to ex ante randomization, while she is independent of mixing with
constant acts when the mixing weights are kept unchanged. Together with other basic axioms,
these axioms characterize the costly ambiguity perception model (Theorem 1).

Section 3.2 examines identification. Our focus is on the uniqueness of the cost structure.
Theorem 2 shows that costs are essentially unique in the class of “canonical” cost structures
(see Definition 2). Also, we identify the minimum and maximum sets of plausible ambiguity
perceptions that represent the same preference. Moreover, we can construct the canonical
costs from certainty equivalent data, which are observable in principle.

Section 4 conducts three comparatives, building on the identification result from Section 3.2.
Although the choices of ambiguity perceptions are not observable, we can compare them
across dms through the choice data. We show that (i) the more neutral to ex ante randomization
a dm is, the more often she changes her choice of ambiguity perceptions; (ii) the more likely
she accepts ambiguity, the lower her costs are; (iii) the higher the incentive of filtering she
has, the more refined the chosen perceptions are.

Section 5 applies our model to explain the typical choices in Machina’s (2009) two examples:
the 50–51 and reflection examples. Most of the models of ambiguity-sensitive decision making
(the meu model, the 𝛼-meu model (Ghirardato et al., 2004), the Choquet expected utility model
(Schmeidler, 1989), the variational model (Maccheroni et al., 2006), the uncertainty averse
model (Cerreia-Vioglio et al., 2011), and the smooth ambiguity model (Klibanoff et al., 2005))
are known to be incompatible with them (Machina, 2009; Baillon et al., 2011). Our numerical
examples explain them by allowing the optimal filtering to depend on the act being evaluated.

Finally, Section 6 discusses special cases and related models. Corollary 2 characterizes
three special cases, which have been studied in a different framework without ex ante
randomization (Payró et al., 2025; Sinander, 2024; Chandrasekher et al., 2022). It clarifies the
differences between our model and theirs at a behavioral level. We also consider the “dual”
version of our model, in which the dm chooses her ambiguity perception to minimize (instead
of maximize) the minimum expected utility at a cost. Corollary 3 characterizes it by replacing
ex ante aversion to randomization with ex ante attraction to randomization in Theorem 1.
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All the proofs are relegated to the Appendix.

1.2. Related Literature. The idea of costly choice of ambiguity perceptions also appears in
an independent work of Payró et al. (2025). They take as the primitive a preference over acts;
that is, the domain does not involve ex ante randomization. Since they focus on a different
behavioral implication from us—aversion to mixing comonotonic acts (i.e., acts varying in
the same direction), each possible ambiguity perception of their dm must be the core of some
convex capacity. This restriction does not impact the explainability of Machina’s (2009) two
examples. Unlike ours, their construction of the representation relies on the properties of
comonotonic acts and the Choquet integral. Compared to them, using the richer domain, we
provide a sharp identification result and conduct comparatives on the parameters.

Another model in which the dm optimally chooses her ambiguity perception is the dual-self
expected utility model by Chandrasekher et al. (2022). They also consider a preference over
acts. The key difference from the costly ambiguity perception model is that there is no cost
function in their representation. While we interpret the maximization as a single dm’s optimal
choice of ambiguity perception, their primary interpretation is an intrapersonal game played
by two selves: pessimism and optimism. As we show in Appendix C, this model accommodates
the reflection example, but is incompatible with the 50-51 example. The latter incompatibility
stems from the certainty independence axiom, which is central to Chandrasekher et al.’s (2022)
characterization.

The “dual” version of the costly ambiguity perception model is a generalization of Ke and
Zhang’s (2020) double maxmin expected utility model. In their model, the dm chooses her
ambiguity perception to minimize the meu value without costs. Their primitive is the same as
ours, but the dm prefers ex ante randomization. It captures the dm’s belief that even ex ante
randomization helps hedge against ambiguity. Despite the similarities in representations, our
characterization is not a direct corollary of theirs. We employ a novel technique to derive the
cost structure of the representation. For details, see the discussion after Theorem 1.

Taking a preference over menus as the primitive, Ergin and Sarver (2010) and de Oliveira
et al. (2017) characterize the behavioral implications of costly information acquisition. In
these models, for each decision problem, the dm optimally chooses an information structure
to balance the benefits and costs. Our identification result is based on a generalization of de
Oliveira et al.’s (2017). Each of the models has been connected to the timing of randomization
(Ergin and Sarver, 2015; Pennesi, 2015).

The costly ambiguity perception model is not the only theory that accounts for Machina’s
two examples. The vector expected utility model (Siniscalchi, 2009) explains them through
the dm’s aversion to utility variability, which is reflected in the adjustment term. Another
approach is to relax the assumption of expected utility on a risky subdomain (Dillenberger
and Segal, 2015; Wang, 2022), while our model maintains it. Without assuming any objective
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randomization, the expected uncertain utility model (Gul and Pesendorfer, 2014) and the
two-stage evaluation model (He, 2021) accommodate the examples. The dm with these models
evaluates outcomes differently depending on whether the outcomes are on an ambiguous
event or not.

2. Model

2.1. Primitives. Given any set 𝑌 , denote by Δs(𝑌 ) the set of all finitely supported probability
measures on 𝑌 ; for each 𝑦 ∈ 𝑌 , denote by δ[ 𝑦] the Dirac measure at 𝑦.

Let 𝛺 be a finite set of states with |𝛺 | ≥ 2, and let 𝑋 be a set of consequences. An act is a
function from 𝛺 to Δs(𝑋). Let ℱ be the set of all acts. With an abuse of notation, identify each
𝑝 ∈ Δs(𝑋) with the constant act of value 𝑝. The dm’s preference is modeled as a binary relation
¥ on Δs(ℱ). Each member of Δs(ℱ) is called a lottery. Denote by ∼ and ≻ the symmetric and
asymmetric parts of ¥, respectively.

For each (𝜆, ( 𝑓 , 𝑔)) ∈ [0, 1] ×ℱ2, define 𝜆 𝑓 + (1 − 𝜆)𝑔 ∈ ℱ as

[𝜆 𝑓 + (1 − 𝜆)𝑔] (𝜔) (𝑍) = 𝜆 𝑓 (𝜔) (𝑍) + (1 − 𝜆)𝑔 (𝜔) (𝑍) ∀(𝜔, 𝑍) ∈ 𝛺 × 2𝑋 .

Thus, in 𝜆 𝑓 + (1− 𝜆)𝑔 , a mixture happens after a state is realized. Refer to this type of mixture
as ex post randomization.

For each (𝜆, (𝑃, 𝑄)) ∈ [0, 1] × Δs(ℱ)2, define 𝜆𝑃 + (1 − 𝜆)𝑄 ∈ Δs(ℱ) as

[𝜆𝑃 + (1 − 𝜆)𝑄] (𝐹) = 𝜆𝑃(𝐹) + (1 − 𝜆)𝑄(𝐹) ∀𝐹 ∈ 2ℱ .

Thus, in 𝜆𝑃 + (1 − 𝜆)𝑄, a mixture happens before a state is realized. Refer to this type of
mixture as ex ante randomization. In particular, 𝜆δ[ 𝑓 ] + (1 − 𝜆)δ[𝑔] is a lottery that yields
𝑓 and 𝑔 with probability 𝜆 and 1 − 𝜆, respectively. It is distinguished from the degenerate
lottery δ[𝜆 𝑓 + (1 − 𝜆)𝑔] at the ex post randomization of 𝑓 and 𝑔 .

2.2. Representation. Let Δ(𝛺) be the set of all probability measures on 𝛺, endowed with
the total variation distance. Let 𝕂 be the set of all nonempty compact convex subsets of
Δ(𝛺), endowed with the Hausdorff metric. Each member of 𝕂 represents an ambiguity
perception: the set of probability distributions the dm believes plausible. A vNM function is
a nonconstant mixture linear real-valued function on Δs(𝑋). With a vNM function 𝑢 and an
ambiguity perception 𝑀 , the meu model evaluates each act 𝑓 as min𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇.

Our representation captures the dm who optimally filters her ambiguity perception at a
cost. The costs are measured by a cost function over feasible ambiguity perceptions. An
(extended) real-valued function is grounded if its infimum is zero. A cost structure is a pair
of a nonempty compact subset of 𝕂 and a lower semicontinuous grounded function on it.

Definition 1. A costly ambiguity perception representation of ¥ is a pair ⟨𝑢, (𝕄, 𝑐)⟩ of a
surjective vNM function and a cost structure such that the real-valued function𝑈 on Δs(ℱ) of
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the form
𝑈 (𝑃) = max

𝑀∈𝕄

[∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑃( 𝑓 ) − 𝑐(𝑀)

]
represents ¥.

A costly ambiguity perception preference is a binary relation on Δs(ℱ) that has a costly
ambiguity perception representation.

In a costly ambiguity perception representation ⟨𝑢, (𝕄, 𝑐)⟩, the set 𝕄 represents the dm’s
set of plausible ambiguity perceptions, and 𝑐 does the cost to filter her ambiguity perception
to each 𝑀 ∈ 𝕄. The dm chooses her ambiguity perception at each lottery to maximize
the expectation of the meu value minus the cost. We offer several interpretations of the
representation. Under each of the interpretations, the representation can be seen as a reduced
form of the dm’s process of subjective optimization, which is not directly observable:

(i) Physical information acquisition. The dm acquires outside information to reduce am-
biguity. She selects the amount or source of information to balance the benefit and
cost.

(ii) Contemplation. The dm contemplates what the “true” probability law is. The contempla-
tion process excludes probability distributions that she considers unreasonable.

(iii) Correction of a bias. The dm is biased to behave robustly, which leads to excessive
ambiguity aversion. Aware of such a bias, she tries to correct it by choosing a smaller
perception.

(iv) Mitigation of fear. The dm fears the ambiguous environment she faces. She tries to
mitigate the fear by choosing a favorable ambiguity perception.

3. Foundations

3.1. Characterization. We introduce several axioms on ¥.
We begin with a standard requirement. The relation ¥ is nondegenerate if there exists

(𝑃, 𝑄) ∈ Δs(ℱ)2 such that 𝑃 ≻ 𝑄; and mixture continuous if for each (𝑃, 𝑄, 𝑅) ∈ Δs(ℱ)3, the
sets { 𝜆 ∈ [0, 1] | 𝜆𝑄 + (1 − 𝜆)𝑅 ¥ 𝑃 } and { 𝜆 ∈ [0, 1] | 𝑃 ¥ 𝜆𝑄 + (1 − 𝜆)𝑅 } are closed.

Axiom 1 (Regularity). The relation ¥ is nondegenerate, complete, transitive, and mixture
continuous.

The following axiom requires monotonicity with respect to the first-order stochastic domi-
nance induced by statewise dominance. Given any binary relation ≽ on a set 𝑌 , a subset 𝑍 of
𝑌 is ≽-increasing if 𝑍 includes { 𝑦 ∈ 𝑌 | 𝑦 ≽ 𝑧 } for each 𝑧 ∈ 𝑍. Define the relation ¥d on ℱ by
𝑓 ¥d 𝑔 if δ[ 𝑓 (𝜔)] ¥ δ[𝑔 (𝜔)] for each 𝜔 ∈ 𝛺. Define the relation ¥FSD on Δs(ℱ) by 𝑃 ¥FSD 𝑄 if
𝑃(𝐹) ≥ 𝑄(𝐹) for each ¥d-increasing subset 𝐹 of ℱ.

Axiom 2 (FSD). For each (𝑃, 𝑄) ∈ Δs(ℱ)2, if 𝑃 ¥FSD 𝑄, then 𝑃 ¥ 𝑄.
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We introduce two axioms on the attitude toward the timing of randomization. First, as
discussed in Section 1, while ex post randomization can help the dm hedge against uncertainty,
ex ante randomization does not. This difference in hedging power motivates the dm to prefer
the former to the latter.

Axiom 3 (Attraction to ex post randomization). For each ((𝜅, 𝜆), 𝑅, ( 𝑓 , 𝑔)) ∈ [0, 1]2 × Δs(ℱ) ×
ℱ2, we have 𝜅δ[𝜆 𝑓 + (1 − 𝜆)𝑔] + (1 − 𝜅)𝑅 ¥ 𝜅[𝜆δ[ 𝑓 ] + (1 − 𝜆)δ[𝑔]] + (1 − 𝜅)𝑅.

Second, if an act is mixed with a constant act, even the ex post randomization of them
does not provide hedging. Thus, the dm has no reason to prefer ex post randomization, since
attraction to ex post randomization is motivated by its hedging power. The following axiom
states that the mixture timing of constant acts does not matter for the dm.

Axiom 4 (Indifference to mixture timing of constant acts). For each ((𝜅, 𝜆), 𝑅, 𝑓 , 𝑝) ∈ [0, 1]2 ×
Δs(ℱ) ×ℱ × Δs(𝑋), we have 𝜅δ[𝜆 𝑓 + (1− 𝜆)𝑝] + (1− 𝜅)𝑅 ∼ 𝜅[𝜆δ[ 𝑓 ] + (1− 𝜆)δ[𝑝]] + (1− 𝜅)𝑅.

Combined with attraction to ex post randomization, this axiom implies that the dm strictly
prefers ex post randomization to ex ante randomization only when two acts to be mixed both
have ambiguity.

We then proceed to two axioms on the attitude toward ex ante randomization. Not only
useless to hedge against uncertainty, ex ante randomization 𝜆𝑃 + (1− 𝜆)𝑄 makes it unable for
the dm to tailor her filtering of the ambiguity perception to the lottery 𝑃 or 𝑄, as illustrated
in Section 1. Consequently, ex ante randomization is unfavorable to the dm with optimal
filtering.

Axiom 5 (Ex ante aversion to randomization). For each (𝜆, (𝑃, 𝑄)) ∈ [0, 1] × Δs(ℱ)2, if 𝑃 ¥ 𝑄,
then 𝑃 ¥ 𝜆𝑃 + (1 − 𝜆)𝑄.

The idea behind ex ante aversion to randomization is close to what motivates the aversion
to contingent planning axiom (Ergin and Sarver, 2010; de Oliveira et al., 2017) in the context
of costly information acquisition: mixture makes the dm’s information acquisition problem
more difficult. Our argument suggests that a similar intuition goes through even when we
adopt interpretations other than costly information acquisition.

The second axiom in this category postulates that the ranking over two lotteries is indepen-
dent of their common unambiguous parts.

Axiom 6 (Independence of constant acts). For each (𝜆, (𝑃, 𝑄), (𝑝, 𝑞)) ∈ [0, 1]×Δs(ℱ)2×Δs(𝑋)2,
if 𝜆𝑃 + (1 − 𝜆)δ[𝑝] ¥ 𝜆𝑄 + (1 − 𝜆)δ[𝑝], then 𝜆𝑃 + (1 − 𝜆)δ[𝑞] ¥ 𝜆𝑄 + (1 − 𝜆)δ[𝑞].

For each constant act 𝑝, the optimal ambiguity perception at a lottery of the form 𝜆𝑃 + (1 −
𝜆)δ[𝑝] depends only on 𝜆 and 𝑃, since the perception choice does not affect the value of the
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constant act 𝑝. Thus, we can interpret independence of constant acts as requiring that changes
in parts irrelevant to filtering do not affect the dm’s ranking.

The final axiom ensures that the range of the vNM function is the entire real line.

Axiom 7 (Unboundedness). For each (𝑝, 𝑞) ∈ Δs(𝑋)2 with δ[𝑝] ≻ δ[𝑞], there exists (𝑟, 𝑠) ∈
Δs(𝑋)2 such that δ[ 1

2𝑟 +
1
2𝑞] ¥ δ[𝑝] and δ[𝑞] ¥ δ[ 1

2 𝑝 +
1
2𝑠].

The following is the main result of this paper. The axioms introduced in this section are all
the behavioral implications of costly ambiguity perception preferences.

Theorem 1. The relation ¥ satisfies regularity, FSD, attraction to ex post randomization, indif-
ference to mixture timing of constant acts, ex ante aversion to randomization, independence of
constant acts, and unboundedness if and only if it has a costly ambiguity perception representa-
tion.

The sufficiency part of the proof of Theorem 1 exploits results from convex analysis and
the notion of niveloids developed in Cerreia-Vioglio et al. (2014) (see Appendices A.1 and A.2).
To do so, we transform each lottery to a continuous real-valued function on a topological
space. We begin by finding a vNM function 𝑢 that represents the restriction of ¥ to Δs(𝑋).
For each 𝑃 ∈ Δs(ℱ), denote by 𝑃𝑢 ∈ Δs(ℝ𝛺) the pushforward of 𝑃 under 𝑓 ↦→ 𝑢 ◦ 𝑓 . Then,
we define a topological space 𝕌 and a mixture linear mapping 𝑚 ↦→ 𝑚∨ from Δs(ℝ𝛺) to the
set of all bounded continuous real-valued functions on 𝕌 (see Appendix A.3 for the precise
definitions). Our construction suggests that 𝑃∨𝑢 = 𝑄∨

𝑢 implies 𝑃 ∼ 𝑄. Using ex ante aversion
to randomization and independence of constant acts, we can construct a convex niveloid𝑊
on {𝑚∨ | 𝑚 ∈ Δs(ℝ𝛺) } such that 𝑃 ↦→𝑊 (𝑃∨𝑢 ) represents ¥. Thus, by the mixture linearity
of 𝑚 ↦→ 𝑚∨, there exists a pair (𝒱, 𝛾) of a set of real-valued functions on ℝ𝛺 and a lower
semicontinuous real-valued function on it such that𝑊 has the form

𝑊 (𝑚∨) = max
𝑉∈𝒱

(∫
𝑉 d𝑚 − 𝛾(𝑉 )

)
.

An important step is to restrict 𝒱 to the class of meu functions. This step relies on Proposi-
tion 6 in Appendix A.2, which is our main technical innovation. It states that we can take 𝒱
as the set satisfying∫

𝑉 d𝑙 ≥
∫
𝑉 d𝑙 ∀𝑉 ∈ 𝒱

⇐⇒ 𝑊 (𝜆𝑙∨ + (1 − 𝜆)𝑚∨) ≥𝑊 (𝜆𝑙∨ + (1 − 𝜆)𝑚∨) ∀(𝜆, 𝑚) ∈ (0, 1] × Δs(ℝ𝛺).

Combined with attraction to ex post randomization and indifference to mixture timing, we
can show that each member of 𝒱 can be written as an meu function with respect to a closed
convex subset of Δ(𝛺). A related result to Proposition 6 has been shown by Cerreia-Vioglio
et al. (2015), but it is not applicable in our setting. Specifically, Proposition 6 extends their
result to a convex niveloid on a more general domain—a set with possibly empty interior.
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Although Theorem 1 extends Ke and Zhang’s (2020) representation theorem of a preference
on a similar domain, our proof strategy is different from theirs. Their proof relies on the
relationship between ¥ and its subrelation ¥∗, which we define in Section 3.2. They show that
¥∗ has a “multi-meu representation” and the original relation ¥ can be recovered through a
“cautious completion” of ¥∗. This leads to a minimization of meu functions over candidate
ambiguity perceptions without costs. In our case, the argument of cautious completion is not
applicable, and we use properties of niveloids to derive a cost structure.

3.2. Identification. The restrictions imposed on cost structures in Definition 1 are not enough
to identify them. For instance, if a cost structure (𝕄, 𝑐) satisfies 𝑀 ⊆ 𝑀′ and 𝑐(𝑀) < 𝑐(𝑀′)
for some (𝑀,𝑀′) ∈ 𝕄2, then slightly decreasing the cost 𝑐(𝑀′) does not change the dm’s
preference (because she never chooses 𝑀′ anyway).

The following definition puts further restrictions on cost structures.

Definition 2. A cost structure (𝕄, 𝑐) is canonical if

(i) for each (𝑀,𝑀′) ∈ 𝕄2, if 𝑀 ⊆ 𝑀′, then 𝑐(𝑀) ≥ 𝑐(𝑀′);

(ii) 𝕄 and 𝑐 are convex.

A costly ambiguity perception representation ⟨𝑢, (𝕄, 𝑐)⟩ is canonical if (𝕄, 𝑐) is canonical.
In Definition 2, condition (i) requires the monotonicity of costs with respect to set inclusion.

It means that the additional filtering starting from any ambiguity perception is costly. Without
condition (ii), there exists (𝜆, (𝑀,𝑀′)) ∈ (0, 1) ×𝕄2 such that 𝑐(𝜆𝑀 + (1 − 𝜆)𝑀′) > 𝜆𝑐(𝑀) +
(1 − 𝜆)𝑐(𝑀′). In this case, the dm never chooses 𝜆𝑀 + (1 − 𝜆)𝑀′, so slightly decreasing
𝑐(𝜆𝑀 + (1 − 𝜆)𝑀′) does not affect her preference.

While canonicality helps identify costs, it still does not pin down the dm’s set of plausible
perceptions. For instance, if the dm chooses some ambiguity perception (say Δ(𝛺)) only when
evaluating constant acts, then we can freely exclude it from the set of perceptions. To explore
the smallest possible canonical cost structure, we introduce the following definitions. For
each binary relation ≽ on Δs(ℱ), a multi-meu representation of ≽ is a subset 𝕄 of 𝕂 such
that 𝑃 ≽ 𝑄 if and only if∫ (

min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑃( 𝑓 ) ≥

∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑄( 𝑓 ) ∀𝑀 ∈ 𝕄.

Define the relation ¥∗ on Δs(ℱ) by 𝑃 ¥∗ 𝑄 if 𝜆𝑃 + (1 − 𝜆)𝑅 ¥ 𝜆𝑄 + (1 − 𝜆)𝑅 for each
(𝜆, 𝑅) ∈ (0, 1] × Δs(ℱ).

Proposition 1. If ¥ is a costly ambiguity perception preference, then ¥∗ has a unique compact
convex multi-meu representation.

We are now ready to state our identification result. For each vNM function 𝑢 representing
the restriction of a costly ambiguity perception preference ¥ to Δs(𝑋), define 𝑐★¥,𝑢 : 𝕂 → [0,∞]
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by

𝑐★¥,𝑢(𝑀) = sup
𝑃∈Δs (ℱ)

[∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑃( 𝑓 ) − 𝑢(𝑃)

]
,

where for each 𝑃 ∈ Δs(ℱ), let 𝑃 ∈ Δs(𝑋) be such that δ[𝑃] ∼ 𝑃. Given any extended real-
valued function 𝛾, let dom 𝛾 be the inverse image of [−∞,∞) under 𝛾. The next theorem shows
four important properties of canonical cost structures: (i) every costly ambiguity perception
preference has a canonical representation; (ii) the smallest and largest sets of perceptions
exist; (iii) the cost function is unique given a vNM function and a set of perceptions; (iv) the
unique cost function can be recovered from observable data.

Theorem 2. Let 𝑢 be a vNM function representing the restriction of a costly ambiguity perception
preference ¥ to Δs(𝑋), and let 𝕄∗ be the compact convex multi-meu representation of ¥∗.

(i) ⟨𝑢, (𝕄, 𝑐)⟩ is a canonical costly ambiguity perception representation of ¥ if and only if 𝕄 is
a compact convex subset of 𝕂 such that 𝕄∗ ⊆ 𝕄 ⊆ dom 𝑐★¥,𝑢 and 𝑐 = 𝑐★¥,𝑢 |𝕄.

(ii) ⟨𝑢, (𝕄, 𝑐)⟩ is a canonical costly ambiguity perception representation of ¥ and 𝕄 is ⊇-
increasing if and only if 𝕄 = dom 𝑐★¥,𝑢 and 𝑐 = 𝑐★¥,𝑢 |𝕄.

The proof of Theorem 2 is based on an intermediate result, Proposition 7, which generalizes
Theorem 2 of de Oliveira et al. (2017) to a more abstract setting. The uniqueness of the set
of perceptions does not have a counterpart in de Oliveira et al. (2017), since they deal with
extended real-valued costs and take as the domain the largest possible set while ours are
real-valued.

Immediately from Theorem 2 and the uniqueness of vNM functions, we obtain the unique-
ness of costly ambiguity perception representations. We omit its straightforward proof.

Corollary 1. If ⟨𝑢, (𝕄, 𝑐)⟩ and ⟨𝑢′, (𝕄′, 𝑐′)⟩ are canonical costly ambiguity perception represen-
tations of the same relation and if 𝕄 and 𝕄′ are ⊇-increasing, then there exists (𝛼, 𝛽) ∈ ℝ++ ×ℝ

such that 𝑢′ = 𝛼𝑢 + 𝛽, 𝕄 =𝕄′, and 𝑐′ = 𝛼𝑐.

4. Comparatives

Consider two dms 1 and 2. Each dm 𝑖 has a preference ¥𝑖 on Δs(ℱ) with a canonical costly
ambiguity perception representation ⟨𝑢𝑖 , (𝕄𝑖 , 𝑐𝑖)⟩.

4.1. Tolerance of ex ante randomization. For each (𝑖, 𝑃) ∈ {1, 2} × Δs(ℱ), let 𝑃𝑖 ∈ Δs(𝑋) be
such that δ[𝑃𝑖] ∼𝑖 𝑃.

Definition 3. Dm 1 is more tolerant of ex ante randomization than dm 2 if for each
(𝜆, (𝑃, 𝑄)) ∈ [0, 1] × Δs(ℱ)2,

𝜆δ[𝑃2] + (1 − 𝜆)δ[𝑄̄2] ∼2 𝜆𝑃 + (1 − 𝜆)𝑄 =⇒ 𝜆δ[𝑃1] + (1 − 𝜆)δ[𝑄̄1] ∼1 𝜆𝑃 + (1 − 𝜆)𝑄.

10



Under regularity and independence of constant acts, the following condition is equivalent
to ex ante aversion to randomization: for each (𝜆, (𝑃, 𝑄), (𝑝, 𝑞)) ∈ [0, 1] × Δs(ℱ)2 × Δs(𝑋)2,
if 𝑃 ∼ δ[𝑝] and 𝑄 ∼ δ[𝑞], then 𝜆δ[𝑝] + (1 − 𝜆)δ[𝑞] ¥ 𝜆𝑃 + (1 − 𝜆)𝑄. Thus, the indifference
𝜆δ[𝑃𝑖] + (1− 𝜆)δ[𝑄̄𝑖] ∼𝑖 𝜆𝑃 + (1− 𝜆)𝑄 suggests that dm 𝑖 is indifferent to ex ante randomizing
𝑃 and 𝑄. A dm will exhibit this indifference when her sets of optimal ambiguity perceptions
at 𝑃 and 𝑄 share the same perception, which remains optimal after the randomization.
Consequently, the attitude toward ex ante randomization should be tied to changes in optimal
ambiguity perceptions.

To formalize the intuition, for each 𝑖 ∈ {1, 2}, define the correspondence 𝒞𝑖 : Δs(ℱ) ⇒ 𝕄𝑖

by

𝒞𝑖 (𝑃) = arg max
𝑀∈𝕄𝑖

[∫ (
min
𝜇∈𝑀

∫
𝑢𝑖 ◦ 𝑓 d𝜇

)
d𝑃( 𝑓 ) − 𝑐𝑖 (𝑀)

]
.

That is, 𝒞𝑖 (𝑃) is the set of dm 𝑖’s optimal ambiguity perceptions at 𝑃.

Proposition 2. Dm 1 is more tolerant of ex ante randomization than dm 2 if and only if for each
(𝑃, 𝑄) ∈ Δs(ℱ)2,

𝒞2(𝑃) ∩𝒞2(𝑄) ≠ ∅ =⇒ 𝒞1(𝑃) ∩𝒞1(𝑄) ≠ ∅.

An empty intersection of 𝒞𝑖 (𝑃) and 𝒞𝑖 (𝑄) indicates that dm 𝑖 changes her ambiguity per-
ception if the alternative changes from 𝑃 to 𝑄. Thus, according to the contrapositive of
Proposition 2, the more ex ante averse to randomization a dm is, the more often she changes
her choice of ambiguity perceptions, and vice versa.

4.2. Tolerance of ambiguity. The following definition extends the notion of comparative
ambiguity aversion by Ghirardato and Marinacci (2002) to include ex ante randomization.

Definition 4. Dm 1 is more tolerant of ambiguity than dm 2 if for each (𝑃, 𝑝) ∈ Δs(ℱ)×Δs(𝑋),

𝑃 ¥2 δ[𝑝] =⇒ 𝑃 ¥1 δ[𝑝] .

This condition implies that dm 1 is more tolerant of ex ante randomization than dm 2.
A dm accepts an ambiguous lottery over a constant act more often if it becomes less costly

to filter her ambiguity perception. Write 𝑢1 ≈ 𝑢2 if 𝑢2 is a positive affine transformation of 𝑢1.

Proposition 3. Dm 1 is more tolerant of ambiguity than dm 2 if and only if 𝑢1 ≈ 𝑢2 and
𝑐★¥1,𝑢1

≤ 𝑐★¥2,𝑢1
.

By Theorem 2 (ii), for ⊇-increasing 𝕄𝑖 ’s, Proposition 3 suggests that if dm 1 is more tolerant
of ambiguity than dm 2, then 𝕄1 ⊇ 𝕄2.

4.3. Filtering incentives. The following notion strengthens comparative tolerance of ambi-
guity.
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Definition 5. Dm 1 has higher filtering incentives than dm 2 if for each (𝜆, (𝑃, 𝑄), 𝑝) ∈
[0, 1] × Δs(ℱ)2 × Δs(𝑋),

𝜆𝑃 + (1 − 𝜆)𝑄 ¥2 𝜆δ[𝑝] + (1 − 𝜆)𝑄 =⇒ 𝜆𝑃 + (1 − 𝜆)𝑄 ¥1 𝜆δ[𝑝] + (1 − 𝜆)𝑄.

To evaluate constant acts, ambiguity perceptions are irrelevant. Thus, in the lottery 𝜆δ[𝑝] +
(1 − 𝜆)𝑄, replacing δ[𝑝] with any other lottery 𝑃 requires additional filtering of ambiguity
perceptions, which can be more costly. A dm accepts the replacement if the additional benefits
outweigh the costs. Hence, higher filtering incentives should reflect higher benefits from
filtering. Define the relation ⊵ on 2𝕂 by 𝕄 ⊵ 𝕄′ if for each 𝑀′ ∈ 𝕄′, there exists 𝑀 ∈ 𝕄 such
that 𝑀 ⊆ 𝑀′.

Proposition 4. Dm 1 has higher filtering incentives than dm 2 if and only if 𝑢1 ≈ 𝑢2 and
𝒞1(𝑃) ⊵ 𝒞2(𝑃) for each 𝑃 ∈ Δs(ℱ).

5. Application

5.1. The 50–51 example. Consider Machina’s (2009) thought experiment with a box contain-
ing 101 balls, called the 50–51 example. Out of the balls, 50 are either red or blue, and 51 are
either green or purple. A ball is drawn at random from the box. The dm is offered four acts 𝑓1,
. . . , 𝑓4. Each act pays off according to the color of the drawn ball, as described in Table 1. For
simplicity, the payoffs are measured in units of utility.

50 balls 51 balls
Red Blue Green Purple

𝑓1 200 200 100 100
𝑓2 200 100 200 100
𝑓3 300 200 100 0
𝑓4 300 100 200 0

Table 1. The 50–51 example.

The only difference between 𝑓1 and 𝑓2, as well as 𝑓3 and 𝑓4, is which draw of a blue or green
ball leads to a higher payoff of 200. Due to the 51st ball, when the likelihood of blue and green
is assessed, 𝑓2 and 𝑓4 have a slight “objective advantage” compared to 𝑓1 and 𝑓3, respectively.
Machina (2009) conjectures that plausible choices are 𝑓1 ≻ 𝑓2 and 𝑓4 ≻ 𝑓3. The first preference
is motivated by the fact that 𝑓2 is more ambiguous than 𝑓1—ambiguity aversion offsets the
objective advantage of 𝑓2. The second might arise because both 𝑓3 and 𝑓4 are ambiguous— 𝑓3

does not have an informational advantage as 𝑓1 does. However, in most ambiguity-sensitive
models, 𝑓1 ≻ 𝑓2 implies 𝑓3 ≻ 𝑓4 (Machina, 2009; Baillon et al., 2011). In Appendix C, we further
extend the incomparability to a broader class of preferences.
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We show that the costly ambiguity perception model can rationalize Machina’s (2009)
conjecture. Let 𝑝 = 50/101, let 𝑞 = 1 − 𝑝, let 𝐵 = [−𝑝/2, 𝑝/2], and let 𝐺 = [−𝑞/2, 𝑞/2].
Identify each (𝑖, 𝑗) ∈ [0, 𝑝] × [0, 𝑞] with the probability distribution over colors such that
the probability of drawing blue is 𝑖 and drawing green is 𝑗. For each (𝛽, 𝛾) ∈ [0, 1]2, let
𝑀 (𝛽, 𝛾) = { (𝑝/2+ 𝛽𝑏, 𝑞/2+𝛾𝑔) | (𝑏, 𝑔) ∈ 𝐵×𝐺 }. Each of the parameters 𝛽 and 𝛾 controls the
size of ambiguity perception 𝑀 (𝛽, 𝛾). The bigger 𝛽 is, the more ambiguous the belief about
blue is. The same is true for 𝛾. Let 𝕄 = {𝑀 (𝛽, 𝛾) | (𝛽, 𝛾) ∈ [0, 1]2 }. Define 𝑐 : [0, 1]2 → ℝ+

by 𝑐(𝛽, 𝛾) = 25[2 − (𝛽 + 𝛾)]. Let𝑈 be the utility function over acts corresponding to the cost
structure (𝕄, 𝑐). Then,

𝑈 ( 𝑓1) = 200𝑝 + 100𝑞 = 100(1 + 𝑝),

𝑈 ( 𝑓2) = max
(𝛽,𝛾)∈[0,1]2

[
100 min

(𝑏,𝑔)∈𝐵×𝐺

(3
2
− 𝛽𝑏 + 𝛾𝑔

)
− 𝑐(𝛽, 𝛾)

]
= max

(𝛽,𝛾)∈[0,1]2
[100 + (25 − 50𝑝)𝛽 + (25 − 50𝑞)𝛾] = 125 − 50𝑝,

𝑈 ( 𝑓3) = max
(𝛽,𝛾)∈[0,1]2

[
100 min

(𝑏,𝑔)∈𝐵×𝐺

(5
2
𝑝 + 1

2
𝑞 − 𝛽𝑟 + 𝛾𝑔

)
− 𝑐(𝛽, 𝛾)

]
= max

(𝛽,𝛾)∈[0,1]2
[250𝑝 + 50𝑞 − 50 + (25 − 50𝑝)𝛽 + (25 − 50𝑞)𝛾] = 25 + 150𝑝,

𝑈 ( 𝑓4) = max
(𝛽,𝛾)∈[0,1]2

[
100 min

(𝑏,𝑔)∈𝐵×𝐺
(2𝑝 + 𝑞 − 2𝛽𝑟 + 2𝛾𝑔) − 𝑐(𝛽, 𝛾)

]
= max

(𝛽,𝛾)∈[0,1]2
[200𝑝 + 100𝑞 − 50 − (25 − 100𝑝)𝛽 + (25 − 100𝑞)𝛾] = 50 + 100𝑝.

Thus, 𝑓1 ≻ 𝑓2 and 𝑓4 ≻ 𝑓3.
In this example, the optimal ambiguity perception at 𝑓1, . . . , 𝑓4 are 𝑀 (1, 1), 𝑀 (1, 0), 𝑀 (1, 0),

and 𝑀 (0, 0), respectively. The dm incurs no filtering cost to evaluate unambiguous act 𝑓1,
whereas she must bear a cost to filter her ambiguity perception optimally when evaluating
at ambiguous act 𝑓2. Here, the cost exceeds the objective advantage of 𝑓2, so the dm prefers
𝑓1 to 𝑓2. In contrast, when 𝑓4 is compared to 𝑓3, the objective advantage of 𝑓4 dominates the
additional cost to filter the belief about blue. As a result, the dm prefers 𝑓4 to 𝑓3.

5.2. The reflection example. Machina’s (2009) second thought experiment uses a box slightly
modified from the previous one: 50 balls—instead of 51—are either green or purple. Table 2
describes acts 𝑓5, . . . , 𝑓8.

The environment is informationally symmetric—there is no evidence to believe one color is
more likely than another. Thus, 𝑓7 is a “reflection” of 𝑓6. The same is true for 𝑓8 and 𝑓5. In many
models of ambiguity, to respect this informational symmetry, the dm has to be indifferent
between all the four acts (Machina, 2009; Baillon et al., 2011). However, L’Haridon and Placido
(2010) report that a typical pattern of an ambiguity-averse dm’s choices are 𝑓6 ≻ 𝑓5 and 𝑓7 ≻ 𝑓8.
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50 balls 50 balls
Red Blue Green Purple

𝑓5 100 200 100 0
𝑓6 100 100 200 0
𝑓7 0 200 100 100
𝑓8 0 100 200 100

Table 2. The reflection example.

To see that the costly ambiguity perception model can justify the typical pattern, let 𝐵 =

𝐺 = [−1/4, 1/4]. As in the previous example, identify each (𝑖, 𝑗) ∈ [0, 1/2] × [0, 1/2] with the
probability distribution over colors such that the probability of drawing blue is 𝑖 and drawing
green is 𝑗. For each (𝛽, 𝛾) ∈ [0, 1]2, let 𝑀 (𝛽, 𝛾) = { (1/4 + 𝛽𝑏, 1/4 + 𝛾𝑔) | (𝑏, 𝑔) ∈ 𝐵 × 𝐺 }. Let
𝕄 = {𝑀 (𝛽, 𝛾) | (𝛽, 𝛾) ∈ [0, 1]2 }. Define 𝑐 : [0, 1]2 → ℝ+ by 𝑐(𝛽, 𝛾) = 30[2 − (𝛽 + 𝛾)]. Let𝑈
be the utility function over acts corresponding to the cost structure (𝕄, 𝑐). Then,

𝑈 ( 𝑓5) = max
(𝛽,𝛾)∈[0,1]2

[
100 min

(𝑏,𝑔)∈𝐵×𝐺
(1 + 𝛽𝑏 + 𝛾𝑔) − 𝑐(𝛽, 𝛾)

]
= max

(𝛽,𝛾)∈[0,1]2
(40 + 5𝛽 + 5𝛾) = 50,

𝑈 ( 𝑓6) = max
(𝛽,𝛾)∈[0,1]2

[
100 min

(𝑏,𝑔)∈𝐵×𝐺
(1 + 2𝛾𝑔) − 𝑐(𝛽, 𝛾)

]
= max

(𝛽,𝛾)∈[0,1]2
(40 + 30𝛽 − 20𝛾) = 70,

𝑈 ( 𝑓7) = max
(𝛽,𝛾)∈[0,1]2

[
100 min

(𝑏,𝑔)∈𝐵×𝐺
(1 + 2𝛽𝑏) − 𝑐(𝛽, 𝛾)

]
= max

(𝛽,𝛾)∈[0,1]2
(40 − 20𝛽 + 30𝛾) = 70,

𝑈 ( 𝑓8) = max
(𝛽,𝛾)∈[0,1]2

[
100 min

(𝑏,𝑔)∈𝐵×𝐺
(1 + 𝛽𝑏 + 𝛾𝑔) − 𝑐(𝛽, 𝛾)

]
= max

(𝛽,𝛾)∈[0,1]2
(40 + 5𝛽 + 5𝛾) = 50.

Thus, 𝑓6 ≻ 𝑓5 and 𝑓7 ≻ 𝑓8.
The optimal ambiguity perception at 𝑓5, . . . , 𝑓8 are 𝑀 (1, 1), 𝑀 (1, 0), 𝑀 (0, 1), and 𝑀 (1, 1),

respectively. That is, the dm engages in costly filtering only when facing 𝑓6 or 𝑓7. The intuition
is as follows. When facing 𝑓5 or 𝑓8, the dm has to be worried about the composition of both
red and blue, and green and purple. In contrast, she can concentrate on filtering only about
one side when facing 𝑓6 or 𝑓7. In this sense, 𝑓5 (resp. 𝑓8) is more “complex” than 𝑓6 (resp. 𝑓7).
This additional complexity makes the evaluation of 𝑓5 or 𝑓8 lower.

The preference in this example can accommodate the typical Ellsberg pattern at the same
time. Table 3 reproduces the two-color Ellsberg-type experiment in the current box. Act 𝑓9 is
risky while act 𝑓10 is ambiguous under informational symmetry. So it is expected that 𝑓9 is
preferred to 𝑓10.

The utility of each act is given by

𝑈 ( 𝑓9) = 100 × 1
2
= 50,
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50 balls 50 balls
Red Blue Green Purple

𝑓9 100 100 0 0
𝑓10 0 100 100 0

Table 3. The Ellsberg-type example.

𝑈 ( 𝑓10) = max
(𝛽,𝛾)∈[0,1]2

[
100 min

(𝑏,𝑔)∈𝐵×𝐺
(𝛽𝑏 + 𝛾𝑔) − 𝑐(𝛽, 𝛾)

]
= max

(𝛽,𝛾)∈[0,1]2
(5𝛽 + 5𝛾 − 60) = −50,

which shows 𝑓9 ≻ 𝑓10.

6. Discussion

6.1. Special cases. We examine three special cases of the costly ambiguity perception model.
Each of them has been studied under the simpler domain without ex ante randomization.

The first two cases restrict the dm’s choice of perceptions.
A convex capacity is a supermodular real-valued function 𝜈 on 2𝛺 such that 𝜈(∅) = 0

and 𝜈(𝛺) = 1. For each convex capacity 𝜈, the core of 𝜈 is the set { 𝜇 ∈ Δ(𝛺) | 𝜇(𝐸) ≥
𝜈(𝐸) for each 𝐸 ∈ 2𝛺 }, and is denoted by core(𝜈). Every convex capacity has a nonempty
core. An optimal ambiguity perception representation of ¥ is a costly ambiguity perception
representation ⟨𝑢, (𝕄, 𝑐)⟩ where each member of 𝕄 is the core of some convex capacity (Payró
et al., 2025). For each 𝜙 ∈ ℝ𝛺, its Choquet integral

∫
𝜙d𝜈 with respect to a convex capacity

𝜈 equals min𝜇∈core(𝜈)
∫
𝜙d𝜇. Thus, if ¥ has an optimal ambiguity perception representation

⟨𝑢, (𝕄, 𝑐)⟩, then there exists a pair (𝑁, 𝐶) of a set of convex capacities and a grounded real-
valued function on 𝑁 such that

𝑃 ↦→ max
𝜈∈𝑁

[∫ (∫
𝑢 ◦ 𝑓 d𝜈

)
d𝑃( 𝑓 ) − 𝐶(𝜈)

]
represents ¥.

The second case restricts possible ambiguity perceptions to singletons. A moral-hazard
representation of¥ is a pair ⟨𝑢, (𝑀, 𝐶)⟩ of a surjective vNM function and a pair of a nonempty
compact subset of Δ(𝛺) and a lower semicontinuous grounded real-valued function on 𝑀

such that
𝑃 ↦→ max

𝜇∈𝑀

[∫ (∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑃( 𝑓 ) − 𝐶(𝜇)

]
represents ¥ (Sinander, 2024).

These two cases are characterized by strengthening indifference to mixture timing of constant
acts. A pair ( 𝑓 , 𝑔) ∈ ℱ2 is comonotonic if δ[ 𝑓 (𝜔)] ¥ δ[ 𝑓 (𝜔′)] is equivalent to δ[𝑔 (𝜔)] ¥

δ[𝑔 (𝜔′)] for each (𝜔, 𝜔′) ∈ 𝛺2.
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Axiom 8 (Indifference to mixture timing of comonotonic acts). For each ((𝜅, 𝜆), 𝑅, ( 𝑓 , 𝑔)) ∈
[0, 1]2 × Δs(ℱ) ×ℱ2, if ( 𝑓 , 𝑔) is comonotonic, then 𝜅δ[𝜆 𝑓 + (1 − 𝜆)𝑔] + (1 − 𝜅)𝑅 ∼ 𝜅[𝜆δ[ 𝑓 ] +
(1 − 𝜆)δ[𝑔]] + (1 − 𝜅)𝑅.

Axiom 9 (Indifference to mixture timing). For each ((𝜅, 𝜆), 𝑅, ( 𝑓 , 𝑔)) ∈ [0, 1]2 × Δs(ℱ) ×ℱ2,
we have 𝜅δ[𝜆 𝑓 + (1 − 𝜆)𝑔] + (1 − 𝜅)𝑅 ∼ 𝜅[𝜆δ[ 𝑓 ] + (1 − 𝜆)δ[𝑔]] + (1 − 𝜅)𝑅.

In the third special case of the costly ambiguity perception model, the dm chooses her
ambiguity perception without costs. A dual-self expected utility representation of ¥ is a
pair (𝑢,𝕄) of a surjective vNM function and a nonempty compact subset of 𝕂 such that

𝑃 ↦→ max
𝑀∈𝕄

∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑃( 𝑓 )

represents ¥ (Chandrasekher et al., 2022).
The dual-self expected utility model is characterized by strengthening independence of

constant acts.

Axiom 10 (Strong independence of constant acts). For each (𝜆, (𝑃, 𝑄), 𝑝) ∈ [0, 1] × Δs(ℱ)2 ×
Δs(𝑋), we have 𝑃 ¥ 𝑄 if and only if 𝜆𝑃 + (1 − 𝜆)δ[𝑝] ¥ 𝜆𝑄 + (1 − 𝜆)δ[𝑝].

The following corollary collects alternative characterizations of the three models on our
domain.

Corollary 2. Suppose that ¥ has a costly ambiguity perception representation.

(i) The relation ¥ satisfies indifference to mixture timing of comonotonic acts if and only if it
has an optimal ambiguity perception representation.

(ii) The relation ¥ satisfies indifference to mixture timing if and only if it has a moral-hazard
representation.

(iii) The relation ¥ satisfies strong independence of constant acts if and only if it has a dual-self
expected utility representation.

As mentioned in Payró et al. (2025), the optimal ambiguity perception model can explain
the typical behaviors in the 50–51 and reflection examples. Indeed, the numerical exam-
ples in Section 5 fall within the class of optimal ambiguity perception models. Since every
moral-hazard preference is ambiguity-seeking (Sinander, 2024), it is incompatible with the
Ellsberg-type behavior. In Appendix C, we show that the dual-self expected utility model can
accommodate the typical pattern in the reflection example, but fails to explain the one in the
50–51 example.

6.2. Dual representation. Our costly ambiguity perception model is closely related to the
double maxmin expected utility model proposed by Ke and Zhang (2020); it is a “dual” version
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of the dual-self expected utility model. The domain of their model is the same as ours: the
original Anscombe–Aumann domain with two-stage randomization.

A cautious costly ambiguity perception representation of ¥ is a pair ⟨𝑢, (𝕄, 𝑐)⟩ of a
surjective vNM function on Δs(𝑋) and a cost structure such that

𝑃 ↦→ min
𝑀∈𝕄

[∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑃( 𝑓 ) + 𝑐(𝑀)

]
represents ¥. A double maxmin expected utility representation of ¥ is a pair (𝑢,𝕄) of a
surjective vNM function and a nonempty compact subset of 𝕂 such that

𝑃 ↦→ min
𝑀∈𝕄

∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑃( 𝑓 )

represents ¥. The former representation generalizes Ke and Zhang’s (2020) latter representa-
tion by adding the cost term.

Ke and Zhang (2020) motivate the double maxmin expected utility model by considering
the case where ex ante randomization may help the dm hedge against ambiguity because of
the dm’s subjective perception of the timing of randomization. The next is a key difference
from the costly ambiguity perception model.

Axiom 11 (Ex ante attraction to randomization). For each (𝜆, (𝑃, 𝑄)) ∈ [0, 1] × Δs(ℱ)2, if
𝑃 ¥ 𝑄, then 𝜆𝑃 + (1 − 𝜆)𝑄 ¥ 𝑄.

By adopting ex ante attraction to randomization instead of ex ante aversion to randomization,
we can replace the “max” in the costly ambiguity perception representation with “min”.

Corollary 3. Assume regularity, FSD, attraction to ex post randomization, indifference to
mixture timing of constant acts, independence of constant acts, and unboundedness.

(i) The relation ¥ satisfies ex ante attraction to randomization if and only if it has a cautious
costly ambiguity perception representation.

(ii) The relation ¥ satisfies ex ante attraction to randomization and strong independence of
constant acts if and only if it has a double maxmin expected utility representation.

We omit the proof of Corollary 3 since the same argument as in the proof of Theorem 1 and
Corollary 2 (iii) applies by changing “convexity” to “concavity” and “max” to “min”.

In addition to the set of axioms in Corollary 3, to characterize the double maxmin expected
utility model, Ke and Zhang (2020) impose the following axiom.

Axiom 12 (Preference for statewise randomization). For each (𝜆, ( 𝑓 , 𝑔)) ∈ (0, 1) ×ℱ2,

(i) δ[ 𝑓 ] ¥ δ[𝑔] implies δ[𝜆 𝑓 + (1 − 𝜆)𝑔] ¥ δ[𝑔];

(ii) δ[ 𝑓 ] ¥ δ[𝑔] if and only if δ[𝜆 𝑓 + (1 − 𝜆)𝑝] ¥ δ[𝜆𝑔 + (1 − 𝜆)𝑝] for each 𝑝 ∈ Δs(𝑋).
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That is, the restriction of ¥ to ℱ is required to satisfy the uncertainty aversion and certainty
independence axioms. As we can see in Corollary 3 (ii), it turns out that preference for statewise
randomization is redundant under the other axioms. We can check this point in the level of
axioms.

Proposition 5. If ¥ satisfies regularity, attraction to ex post randomization, indifference to
mixture timing of constant acts, ex ante attraction to randomization, and strong independence
of constant acts, then it satisfies preference for statewise randomization.

By a similar reasoning, we can see that the cautious costly ambiguity perception preference
satisfies the weak certainty independence axiom of Maccheroni et al. (2006). Thus, it coincides
with the variational model (Maccheroni et al., 2006) on the domain of acts, and so it cannot
account for Machina’s examples, as shown in Baillon et al. (2011).

Appendix A. Preliminaries

A.1. Convex analysis. Let 𝐸 be a normed space, and let 𝐸′ be its norm dual. Define the
bilinear functional ⟨·, ·⟩ on 𝐸 × 𝐸′ by ⟨𝑥, 𝑥′⟩ = 𝑥′(𝑥).

For each real-valued function 𝑊 on a subset 𝐷 of 𝐸, the convex conjugate of 𝑊 is the
extended real-valued function 𝑊∗ on 𝐸′ of the form 𝑊∗(𝑥′) = sup𝑥∈𝐷(⟨𝑥, 𝑥′⟩ −𝑊 (𝑥)); the
subdifferential of𝑊 is the correspondence 𝜕𝑊 : 𝐷 ⇒ 𝐸′ of the form 𝜕𝑊 (𝑥) =⋂

𝑦∈𝐷{ 𝑥′ ∈ 𝐸′ |
𝑊 ( 𝑦) ≥𝑊 (𝑥) + ⟨𝑦 − 𝑥, 𝑥′⟩ }; let gr 𝜕𝑊 be the graph { (𝑥, 𝑥′) ∈ 𝐷 × 𝐸′ | 𝑥′ ∈ 𝜕𝑊 (𝑥) } of 𝜕𝑊 .

Lemma 1. Let𝑊 be a real-valued function on a subset 𝐷 of 𝐸.

(i) 𝑊∗ is weak∗ lower semicontinuous and convex.

(ii) 𝑊 (𝑥) ≥ ⟨𝑥, 𝑥′⟩ −𝑊∗(𝑥′) for each (𝑥, 𝑥′) ∈ 𝐷 × 𝐸′.

(iii) 𝑊 (𝑥) = ⟨𝑥, 𝑥′⟩ −𝑊∗(𝑥′) if and only if (𝑥, 𝑥′) ∈ gr 𝜕𝑊 .

(iv) 𝜕𝑊 has weak∗ closed convex values.

(v) If𝑊 is lower semicontinuous and if 𝐵 is a norm bounded weak∗ closed subset of 𝐸′, then
gr 𝜕𝑊 ∩ (𝐷 × 𝐵) is norm × weak∗ closed.

Proof. (i) Since 𝑊∗ is the pointwise supremum of the family (⟨𝑥, ·⟩ −𝑊 (𝑥))𝑥∈𝐸 of weak∗
continuous affine functions, it is weak∗ lower semicontinuous and convex.

(ii) For each (𝑥, 𝑥′) ∈ 𝐷×𝐸′, since𝑊∗(𝑥′) ≥ ⟨𝑥, 𝑥′⟩−𝑊 (𝑥), we have𝑊 (𝑥) ≥ ⟨𝑥, 𝑥′⟩−𝑊∗(𝑥′).
(iii) It follows that (𝑥, 𝑥′) ∈ gr 𝜕𝑊 if and only if𝑊 (𝑥) ≤ ⟨𝑥, 𝑥′⟩ − (⟨𝑦, 𝑥′⟩ −𝑊 ( 𝑦)) for each

𝑦 ∈ 𝐷, which is equivalent to𝑊 (𝑥) ≤ ⟨𝑥, 𝑥′⟩ −𝑊∗(𝑥′). The statement follows from part (ii).
(iv) For each 𝑥 ∈ 𝐷, the set 𝜕𝑊 (𝑥) is the intersection of closed half spaces.
(v) By Theorem 2.4.2 (ix) of Zălinescu (2002). □

A convex function𝑊 is proper if dom𝑊 ≠ ∅ and never assumes the value −∞.
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Lemma 2. Let𝑊 be a Lipschitz continuous proper convex function on a convex subset 𝐷 of 𝐸.

(i) 𝜕𝑊 has nonempty values.

(ii) For each (𝑥, 𝑦) ∈ 𝐷2, it follows that 𝜕𝑊 (𝑥) ∩ 𝜕𝑊 ( 𝑦) ≠ ∅ if and only if𝑊 (𝜆𝑥 + (1 − 𝜆) 𝑦) =
𝜆𝑊 (𝑥) + (1 − 𝜆)𝑊 ( 𝑦) for each 𝜆 ∈ [0, 1].

Proof. (i) Apply the same argument as in the proof of the Duality Theorem of Gale (1967).
(ii) Apply the same argument as in the proof of Proposition 1 of Pennesi (2015). □

A subset 𝐶 of 𝐸 is conical if 𝛼𝐶 ⊆ 𝐶 for each 𝛼 ∈ ℝ+. A cone is a conical subset of 𝐸. For each
subset 𝑆 of 𝐸, let 𝑆+ =

⋂
𝑥∈𝑆{ 𝑥′ ∈ 𝐸′ | ⟨𝑥, 𝑥′⟩ ≥ 0 }, and let 𝑆++ =

⋂
𝑥′∈𝑆+{ 𝑥 ∈ 𝐸 | ⟨𝑥, 𝑥′⟩ ≥ 0 }.

The next is Theorem 1.1.9 of Zălinescu (2002).

Lemma 3. The closure of a convex conical subset 𝑆 of 𝐸 equals 𝑆++.

Let𝑊 be a convex function on a convex subset 𝐷 of 𝐸. For each (𝑥, 𝑣) ∈ 𝐷×𝐸 with 𝑥+𝜀𝑣 ∈ 𝐷
for some 𝜀 ∈ ℝ++, the right directional derivative of𝑊 in the direction 𝑣 at 𝑥 is the number
D+
𝑣𝑊 (𝑥) defined as

D+
𝑣𝑊 (𝑥) = lim

𝜆↓0

𝑊 (𝑥 + 𝜆𝑣) −𝑊 (𝑥)
𝜆

.

The following comes from Theorem 2.4.9 of Zălinescu (2002).

Lemma 4. Let𝑊 be a continuous proper convex function on 𝐸. Then, D+
𝑣𝑊 (𝑥) = max𝑥′∈𝜕𝑊 (𝑥) ⟨𝑣, 𝑥′⟩

for each (𝑥, 𝑣) ∈ 𝐸2.

For each real-valued function𝑊 on a convex subset 𝐷 of 𝐸, define the relation ≽∗
𝑊 on 𝐷 by

𝑥 ≽∗
𝑊 𝑦 ⇐⇒ 𝑊 (𝜆𝑥 + (1 − 𝜆)𝑧) ≥𝑊 (𝜆 𝑦 + (1 − 𝜆)𝑧) ∀(𝜆, 𝑧) ∈ (0, 1] × 𝐷,

whose graph { (𝑥, 𝑦) ∈ 𝐷2 | 𝑥 ≽∗
𝑊 𝑦 } is denoted by gr(≽∗

𝑊 ). A binary relation ≽ on 𝐷

is mixture independent if 𝑥 ≽ 𝑥 if and only if 𝜆𝑥 + (1 − 𝜆) 𝑦 ≽ 𝜆𝑥 + (1 − 𝜆) 𝑦 for each
(𝜆, 𝑦) ∈ (0, 1] × 𝐷.

Lemma 5. Let𝑊 be a real-valued function on a convex subset 𝐷 of 𝐸. Then, ≽∗
𝑊 is transitive

and mixture independent.

Proof. By definition, ≽∗
𝑊 is transitive. If 𝑥 ≽∗

𝑊 𝑥, then for each (𝜆, 𝑦) ∈ (0, 1] × 𝐷, since for
each (𝜅, 𝑧) ∈ (0, 1] × 𝐷, letting 𝑧 = (1 − 𝜅𝜆)−1 [𝜅(1 − 𝜆) 𝑦 + (1 − 𝜅)𝑧] gives 𝑧 ∈ 𝐷 and

𝑊 (𝜅[𝜆𝑥 + (1 − 𝜆) 𝑦] + (1 − 𝜅)𝑧) =𝑊 (𝜅𝜆𝑥 + (1 − 𝜅𝜆)𝑧)

≥𝑊 (𝜅𝜆𝑥 + (1 − 𝜅𝜆)𝑧) =𝑊 (𝜅[𝜆𝑥 + (1 − 𝜆) 𝑦] + (1 − 𝜅)𝑧),

we have 𝜆𝑥 + (1 − 𝜆) 𝑦 ≽∗
𝑊 𝜆𝑥 + (1 − 𝜆) 𝑦. Thus, ≽∗

𝑊 is mixture independent. □
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A.2. Niveloids. Let (𝐸,≥) be a Riesz space with unit 𝑒; that is, 𝐸 is a lattice under the order ≥,
and for each 𝑥 ∈ 𝐸, there exists 𝛼 ∈ ℝ++ such that 𝛼𝑒 ≥ 𝑥 ≥ −𝛼𝑒. Denote by 𝐸+ the positive
cone of 𝐸. For each 𝑥 ∈ 𝐸, the absolute value of 𝑥 is 𝑥 ∨ (−𝑥), and is denoted by |𝑥 |; the
essential supremum of 𝑥 is the number inf{ 𝛼 ∈ ℝ | 𝛼𝑒 ≥ 𝑥 }, and is denoted by esup(𝑥).
Endow 𝐸 with the norm 𝑥 ↦→ esup( |𝑥 |).

A real-valued function𝑊 on a subset 𝐷 of 𝐸 is

• monotone if𝑊 (𝑥) ≥𝑊 ( 𝑦) for each (𝑥, 𝑦) ∈ 𝐷2 with 𝑥 ≥ 𝑦;

• normalized if𝑊 (𝑡𝑒) = 𝑡 for each 𝑡 ∈ ℝ with 𝑡𝑒 ∈ 𝐷;

• translation equivariant if𝑊 (𝑥 + 𝑡𝑒) =𝑊 (𝑥) + 𝑡 for each (𝑥, 𝑡) ∈ 𝐷 ×ℝ with 𝑥 + 𝑡𝑒 ∈ 𝐷;

• a niveloid if𝑊 (𝑥) −𝑊 ( 𝑦) ≤ esup(𝑥 − 𝑦) for each (𝑥, 𝑦) ∈ 𝐷2.

By construction, every niveloid is 1-Lipschitz continuous.
A tube is a subset 𝑇 of 𝐸 such that 𝑇 + { 𝑡𝑒 | 𝑡 ∈ ℝ } ⊆ 𝑇 . The next is Proposition 2 of

Cerreia-Vioglio et al. (2014).

Lemma 6.

(i) Every niveloid is monotone and translation equivariant.

(ii) Every monotone translation equivariant real-valued function on a tube is a niveloid.

Let 𝛥 = { 𝑥′ ∈ 𝐸′+ | ⟨𝑒, 𝑥′⟩ = 1 }, which is weak∗ compact and convex. For each real-valued
function𝑊 on a subset 𝐷 of 𝐸, define the correspondence 𝜕π𝑊 : 𝐷 ⇒ 𝐸 by 𝜕π𝑊 (𝑥) = 𝜕𝑊 (𝑥)∩𝛥.

Lemma 7. Let𝑊 be a convex niveloid on a convex subset 𝐷 of 𝐸.

(i) If 𝐷 = 𝐸, then 𝜕𝑊 = 𝜕π𝑊 .

(ii) 𝜕π𝑊 has nonempty weak∗ compact convex values.

Proof. (i) Suppose 𝐷 = 𝐸. By Lemma 6 (i),𝑊 is monotone and translation equivariant. Thus,
for each (𝑥, 𝑥′) ∈ gr 𝜕𝑊 , since ⟨−𝑣, 𝑥′⟩ = ⟨𝑥 − 𝑣, 𝑥′⟩ − ⟨𝑥, 𝑥′⟩ ≤𝑊 (𝑥 − 𝑣) −𝑊 (𝑥) ≤ 0 for each
𝑣 ∈ 𝐸+, we have 𝑥′ ∈ 𝐸′+; since 𝛼⟨𝑒, 𝑥′⟩ = ⟨𝑥 + 𝛼𝑒, 𝑥′⟩ − ⟨𝑥, 𝑥′⟩ ≤ 𝑊 (𝑥 + 𝛼𝑒) −𝑊 (𝑥) = 𝛼 for
each 𝛼 ∈ ℝ, we have ⟨𝑒, 𝑥′⟩ = 1.

(ii) By Theorem 1 and Proposition 4 of Cerreia-Vioglio et al. (2014),𝑊 has a convex niveloidal
extension 𝑊̂ to 𝐸. For each 𝑥 ∈ 𝐷, since 𝜕𝑊 (𝑥) is weak∗ closed and convex by Lemma 1
(iv), 𝜕π𝑊 (𝑥) is weak∗ compact and convex; since 𝜕𝑊̂ (𝑥) ≠ ∅ by Lemma 2 (i) and since
𝜕π𝑊̂ (𝑥) = 𝜕𝑊̂ (𝑥) ⊆ 𝜕𝑊 (𝑥) by part (i), we have 𝜕π𝑊 (𝑥) ≠ ∅. □

For each real-valued function𝑊 on a subset 𝐷 of 𝐸, a variational representation of𝑊 is
a pair (𝛱, 𝛾) of a weak∗ compact subset of 𝛥 and a weak∗ lower semicontinuous extended
real-valued function on 𝛱 such that𝑊 (𝑥) = max𝜋∈𝛱 (⟨𝑥, 𝜋⟩ − 𝛾(𝜋)) for each 𝑥 ∈ 𝐷.

Lemma 8. Let𝑊 be a real-valued function on a convex subset 𝐷 of 𝐸.
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(i) If𝑊 has a variational representation, then it is convex, monotone, and translation equi-
variant.

(ii) If 𝑡𝑒 ∈ 𝐷 for some 𝑡 ∈ ℝ, if𝑊 is normalized, and if (𝛱, 𝛾) is a variational representation of
𝑊 , then 𝛾 is grounded.

Proof. (i) If (𝛱, 𝛾) is a variational representation of𝑊 , then since ⟨·, 𝜋⟩ − 𝛾(𝜋) is mixture
linear, monotone, and translation equivariant for each 𝜋 ∈ 𝛱, the function 𝑊 is convex,
monotone, and translation equivariant.

(ii) Suppose that 𝑡𝑒 ∈ 𝐷 for some 𝑡 ∈ ℝ, that𝑊 is normalized, and that (𝛱, 𝛾) is a variational
representation of𝑊 . Since 𝑡 =𝑊 (𝑡𝑒) = max𝜋∈𝛱 (⟨𝑡𝑒, 𝜋⟩ − 𝛾(𝜋)) = 𝑡 − min 𝛾(𝛱), the function
𝛾 is grounded. □

For each real-valued function𝑊 on a convex subset of 𝐸, a multi-expectation representa-
tion of ≽∗

𝑊 is a subset 𝛱 of 𝛥 such that

𝑥 ≽∗
𝑊 𝑦 ⇐⇒ ⟨𝑥, 𝜋⟩ ≥ ⟨𝑦, 𝜋⟩ ∀𝜋 ∈ 𝛱.

Proposition 6. Let𝑊 be a convex niveloid on a convex subset 𝐷 of 𝐸. Then, there exists a weak∗
compact convex subset 𝛱 of dom𝑊∗ |𝛥 such that 𝛱 is a multi-expectation representation of ≽∗

𝑊

and (𝛱,𝑊∗ |𝛱) is a variational representation of𝑊 .

Proof. Let 𝐾 = { 𝛼(𝑥− 𝑦) | (𝛼, (𝑥, 𝑦)) ∈ ℝ+×gr(≽∗
𝑊 ) }. By construction, 𝐾 is conical. For each

((𝛼, (𝑥, 𝑦)), (𝛽, (𝑥, 𝑦̃))) ∈ (ℝ++×gr(≽∗
𝑊 ))2, letting 𝜆 = 𝛼/(𝛼+𝛽) gives 𝜆𝑥+(1−𝜆) 𝑦 ≽∗

𝑊 𝜆 𝑦+(1−
𝜆)𝑥 ≽∗

𝑊 𝜆 𝑦+(1−𝜆) 𝑦̃ by Lemma 5, so𝛼(𝑥− 𝑦)+𝛽(𝑥− 𝑦̃) = (𝛼+𝛽) [𝜆 (𝑥− 𝑦)+(1−𝜆) (𝑥− 𝑦̃)] ∈ 𝐾 .
Thus, 𝐾 is convex. Since𝑊 is continuous, the set 𝐾 is closed. Thus, by Lemma 3, 𝐾 = 𝐾++.

We claim that 𝜕π𝑊 (𝑥) intersects 𝐾+ for each 𝑥 ∈ 𝐷. Seeking a contradiction, suppose
otherwise. Let 𝑥 ∈ 𝐷 be such that 𝜕π𝑊 (𝑥) ∩ 𝐾+ = ∅. By Lemma 7 (ii), we can apply the
separation theorem (Aliprantis and Border, 2006, Theorem 5.79) to get (𝑥, 𝑐) ∈ 𝐸×ℝ such that
𝑥 ≠ 0 and ⟨𝑥, 𝜋⟩ < 𝑐 ≤ ⟨𝑥, 𝑥′⟩ for each (𝜋, 𝑥′) ∈ 𝜕π𝑊 (𝑥) × 𝐾+. Since 𝐾+ is conical, we have
𝑥 ∈ 𝐾++ = 𝐾 and 𝑐 ≤ 0. Since by Lemma 1 (v) and Theorem 17.11 of Aliprantis and Border
(2006), the correspondence 𝜕π𝑊 is upper hemicontinuous, there exists an open neighborhood
𝑈 of 𝑥 such that 𝜕π𝑊 (𝑢) ⊆ { 𝜋 ∈ 𝛥 | ⟨𝑥, 𝜋⟩ < 𝑐 } for each𝑢 ∈ 𝑈 . Let (𝑢, 𝜀) ∈ 𝑈×ℝ++ be such that
𝑢−𝜀𝑥 ∈ 𝐷. Since 𝑥 ∈ 𝐾 , we have 𝑢 ≽∗

𝑊 𝑢−𝜀𝑥. However,𝑊 (𝑢−𝜀𝑥)−𝑊 (𝑢) ≥ −⟨𝜀𝑥, 𝜋⟩ > −𝜀𝑐 ≥ 0
for each 𝜋 ∈ 𝜕π𝑊 (𝑢), which is a contradiction.

Let 𝛱 = dom𝑊∗ |𝛥 ∩ 𝐾+. By the above claim and Lemma 1 (i)–(iii), 𝛱 is nonempty, weak∗
compact, and convex, and (𝛱,𝑊∗ |𝛱) is a variational representation of 𝑊 . Thus, for each
(𝑥, 𝑦) ∈ 𝐷2, if ⟨𝑥, 𝜋⟩ ≥ ⟨𝑦, 𝜋⟩ for each 𝜋 ∈ 𝛱, then 𝑥 ≽∗

𝑊 𝑦. Since 𝑥 ≽∗
𝑊 𝑦 implies ⟨𝑥, 𝑥′⟩ ≥

⟨𝑦, 𝑥′⟩ for each 𝑥′ ∈ 𝐾+, the set 𝛱 is a multi-expectation representation of ≽∗
𝑊 . □

A variational representation (𝛱, 𝛾) is canonical if

(i) for each (𝜋, 𝜋′) ∈ 𝛱2, if ⟨𝑥, 𝜋⟩ ≥ ⟨𝑥, 𝜋′⟩ for each 𝑥 ∈ 𝐷, then 𝛾(𝜋) ≥ 𝛾(𝜋′);
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(ii) 𝛱 and 𝛾 are convex.

The next generalizes Theorem 2 of de Oliveira et al. (2017) to an abstract setting.

Proposition 7. Let (𝛱, 𝛾) be a canonical variational representation of a convex niveloid𝑊 on
a convex conical subset 𝐷 in 𝐸. Then, 𝛾 =𝑊∗ |𝛱 .

Proof. For each 𝜋 ∈ 𝛱, since 𝛾(𝜋) ≥ ⟨𝑥, 𝜋⟩ −𝑊 (𝑥) for each 𝑥 ∈ 𝐷, we have 𝛾(𝜋) ≥ 𝑊∗(𝜋).
Thus, 𝛾 ≥𝑊∗ |𝛱 . For the converse inequality, fix any 𝜋̄ ∈ 𝛱. Choose any𝛼 ∈ [min𝑊∗(𝛱), 𝛾(𝜋̄)).
Define 𝑊̂ : 𝐷++ → ℝ by𝑊̂ (𝑥) = max𝜋∈𝛱 (⟨𝑥, 𝜋⟩−𝛾(𝜋)), which is a unique niveloidal extension
of𝑊 to 𝐷++. By the definition of𝑊∗, it suffices to show that there exists 𝑥 ∈ 𝐷++ for which
⟨𝑥, 𝜋̄⟩ − 𝑊̂ (𝑥) > 𝛼. Let 𝐶 = { (𝜋̄ + 𝑥′, 𝛼) | 𝑥′ ∈ 𝐷+ }, let epi 𝛾 be the epigraph of 𝛾, and let
𝐹 = epi 𝛾∩(𝛱×[min𝑊∗(𝛱), 𝛼+1])−𝐶. For each 𝑥′ ∈ 𝐷+ with 𝜋̄+𝑥′ ∈ 𝛱, since ⟨𝑥, 𝜋̄+𝑥′⟩ ≥ ⟨𝑥, 𝜋̄⟩
for each 𝑥 ∈ 𝐷, we have 𝛾(𝜋̄ + 𝑥′) ≥ 𝛾(𝜋̄) > 𝛼. Thus, epi 𝛾 ∩ 𝐶 = ∅, so 𝐹 does not contain zero.
Since epi 𝛾 ∩ (𝛱 × [𝛼 + 1,∞)) − 𝐶 ⊆ 𝐸′ × [1,∞), we have epi 𝛾 − 𝐶 ⊆ 𝐹 ∪ (𝐸′ × [1,∞)). Hence,
the weak∗ closure of epi 𝛾 − 𝐶 does not contain zero. Therefore, we can apply the separation
theorem (Aliprantis and Border, 2006, Corollary 5.80) to get (𝑥, 𝛽) ∈ 𝐸 ×ℝ such that

sup
((𝜋,𝑟),𝑥′)∈epi 𝛾×𝐷+

(⟨𝑥, 𝜋 − 𝜋̄ − 𝑥′⟩ + 𝛽(𝑟 − 𝛼)) < 0,

which implies (𝑥, 𝛽) ∈ 𝐷++ × (−ℝ+), so

max
𝜋∈𝛱

(⟨𝑥, 𝜋⟩ + 𝛽𝛾(𝜋)) < ⟨𝑥, 𝜋̄⟩ + 𝛼𝛽.

If 𝛽 = 0, then max𝜋∈𝛱 ⟨𝑥, 𝜋⟩ < ⟨𝑥, 𝜋̄⟩, so for sufficiently large 𝑛 ∈ ℕ,

⟨𝑛𝑥, 𝜋̄⟩ − 𝑊̂ (𝑛𝑥) = ⟨𝑛𝑥, 𝜋̄⟩ − max
𝜋∈𝛱

(⟨𝑛𝑥, 𝜋⟩ − 𝛾(𝜋)) ≥ 𝑛
(
⟨𝑥, 𝜋̄⟩ − max

𝜋∈𝛱
⟨𝑥, 𝜋⟩

)
+ min 𝛾(𝛱) > 𝛼.

If 𝛽 < 0, then since −𝛽−1𝑥 ∈ 𝐷++, it is without loss of generality to assume 𝛽 = −1, so
𝛼 < ⟨𝑥, 𝜋̄⟩ − max𝜋∈𝛱 (⟨𝑥, 𝜋⟩ − 𝛾(𝜋)) = ⟨𝑥, 𝜋̄⟩ − 𝑊̂ (𝑥). □

Lemma 9. Let𝑊 be a convex niveloid on a convex conical subset 𝐷 of 𝐸, and let 𝛱 be a subset
of 𝛥 such that (𝛱,𝑊∗ |𝛱) is a canonical variational representation of𝑊 .

(i) For each (𝑥, 𝑦) ∈ 𝐷2, it follows that 𝜕𝑊 (𝑥)∩𝜕𝑊 ( 𝑦)∩𝛱 ≠ ∅ if and only if𝑊 (𝜆𝑥+(1−𝜆) 𝑦) =
𝜆𝑊 (𝑥) + (1 − 𝜆)𝑊 ( 𝑦) for each 𝜆 ∈ [0, 1].

(ii) D+
𝑣𝑊 (𝑥) = max𝜋∈𝜕𝑊 (𝑥)∩𝛱 ⟨𝑣, 𝜋⟩ for each (𝑥, 𝑣) ∈ 𝐷2.

Proof. Define 𝑊̂ : 𝐸 → ℝ by 𝑊̂ (𝑥) = max𝜋∈𝛱 (⟨𝑥, 𝜋⟩ −𝑊∗(𝜋)), which is a convex niveloidal
extension of𝑊 by Lemma 6 (ii) and Lemma 8 (i). Define 𝛾 : 𝛥→ (−∞,∞] by 𝛾(𝜋) =𝑊∗(𝜋) if
𝜋 ∈ 𝛱 and 𝛾(𝜋) =∞ otherwise. Then, (𝛥, 𝛾) is a canonical variational representation of 𝑊̂ , so
by Proposition 7, 𝛾 = 𝑊̂∗ |𝛥. Hence, by Lemma 1 (iii), 𝜕𝑊̂ (𝑥) ⊆ 𝛱 for each 𝑥 ∈ 𝐸.

(i) Choose any (𝑥, 𝑦) ∈ 𝐷2. By Lemma 2 (ii), 𝜕𝑊 (𝑥) ∩ 𝜕𝑊 ( 𝑦) ∩ 𝛱 ≠ ∅ implies𝑊 (𝜆𝑥 + (1 −
𝜆) 𝑦) = 𝜆𝑊 (𝑥) + (1− 𝜆)𝑊 ( 𝑦) for each 𝜆 ∈ [0, 1]. Conversely, suppose that𝑊 (𝜆𝑥 + (1− 𝜆) 𝑦) =
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𝜆𝑊 (𝑥) + (1 − 𝜆)𝑊 ( 𝑦) for each 𝜆 ∈ [0, 1]. Then, 𝑊̂ (𝜆𝑥 + (1 − 𝜆) 𝑦) = 𝜆𝑊̂ (𝑥) + (1 − 𝜆)𝑊̂ ( 𝑦)
for each 𝜆 ∈ [0, 1]. Thus, again by Lemma 2 (ii), 𝜕𝑊̂ (𝑥) ∩ 𝜕𝑊̂ ( 𝑦) ≠ ∅. Here, by construction,
𝜕𝑊 (𝑥) ∩ 𝜕𝑊 ( 𝑦) ∩ 𝛱 ⊇ 𝜕𝑊̂ (𝑥) ∩ 𝜕𝑊̂ ( 𝑦).

(ii) Choose any (𝑥, 𝑣) ∈ 𝐷2. Since 𝜕𝑊 (𝑥) ⊇ 𝜕𝑊̂ (𝑥) by definition, it follows from Lemma 4
that D+

𝑣𝑊 (𝑥) = D+
𝑣𝑊̂ (𝑥) = max𝜋∈𝜕𝑊̂ (𝑥) ⟨𝑣, 𝜋⟩ ≤ max𝜋∈𝜕𝑊 (𝑥)∩𝛱 ⟨𝑣, 𝜋⟩. For each 𝜋 ∈ 𝜕𝑊 (𝑥) ∩ 𝛱,

since 𝜆⟨𝑣, 𝜋⟩ ≤ 𝑊 (𝑥 + 𝜆𝑣) −𝑊 (𝑥) for each 𝜆 ∈ ℝ++, we have ⟨𝑣, 𝜋⟩ ≤ D+
𝑣𝑊 (𝑥). Thus,

D+
𝑣𝑊 (𝑥) = max𝜋∈𝜕𝑊 (𝑥)∩𝛱 ⟨𝑣, 𝜋⟩. □

A.3. Cost structures. Given any topological space 𝑌 , denote by Cb(𝑌 ) the Banach lattice of
all bounded continuous real-valued functions on 𝑌 , endowed with the pointwise ordering
and the uniform norm; denote by ca(𝑌 ) the Banach lattice of all signed Borel measures on 𝑌
of bounded variation, endowed with the setwise ordering and the total variation norm; by
the Riesz representation theorem (Aliprantis and Border, 2006, Corollary 14.15), ca(𝑌 ) is the
norm dual of Cb(𝑌 ) when 𝑌 is compact and metrizable.

Let 𝛷 = ℝ𝛺, endowed with the uniform norm. The constant function 1𝛺 of value one is an
order unit of 𝛷. A real-valued function 𝑉 on 𝛷 is positively homogeneous if 𝑉 (𝛼𝑥) = 𝛼𝑉 (𝑥)
for each (𝛼, 𝑥) ∈ ℝ+ × 𝛷.

Fix any 𝜔̄ ∈ 𝛺. Let𝛹 = {𝜓 ∈ 𝛷 | 𝜓(𝜔̄) = 0 and max𝜔∈𝛺 |𝜓(𝜔) | = 1 }, and let 𝕌 be the closed
unit ball in the set of continuous real-valued functions on𝛹 endowed with the uniform norm.
The constant function 1𝕌 of value one is an order unit of Cb(𝕌), and the norm of each 𝜉 ∈ Cb(𝕌)
equals esup( |𝜉 |). For each 𝜙 ∈ 𝛷 \ { 𝑡1𝛺 | 𝑡 ∈ ℝ }, there exists a unique (𝛼, 𝜓, 𝑡) ∈ ℝ++ ×𝛹 ×ℝ

such that 𝜙 = 𝛼𝜓 + 𝑡1𝛺. Thus, every 𝑣 ∈ 𝕌 has a unique positively homogeneous translation
equivariant extension 𝑣̂ to𝛷, which has the form 𝑣̂(𝛼𝜓+ 𝑡1𝛺) = 𝛼𝑣(𝜓) + 𝑡. For each𝑚 ∈ Δs(𝛷),
define 𝑚∨ ∈ Cb(𝕌) by 𝑚∨(𝑣) =

∫
𝑣̂ d𝑚. Let 𝛯 = {𝑚∨ | 𝑚 ∈ Δs(𝛷) }.

Lemma 10.

(i) 𝑚 ↦→ 𝑚∨ from Δs(𝛷) to Cb(𝕌) is mixture linear.

(ii) 𝜙 ↦→ δ[𝜙]∨ from 𝛷 to Cb(𝕌) is positively homogeneous and translation equivariant.

(iii) 𝛯 is a convex conical tube in Cb(𝕌).

Proof. (i) For each (𝜆, (𝑙, 𝑚), 𝑣) ∈ [0, 1] × Δs(𝛷)2 × 𝕌, since [𝜆𝑙∨ + (1 − 𝜆)𝑚∨] (𝑣) = 𝜆
∫
𝑣̂ d𝑙 +

(1 − 𝜆)
∫
𝑣̂ d𝑚 =

∫
𝑣̂ d[𝜆𝑙 + (1 − 𝜆)𝑚] = [𝜆𝑙 + (1 − 𝜆)𝑚]∨(𝑣).

(ii) By the positive homogeneity and translation equivariance of 𝑣̂ for each 𝑣 ∈ 𝕌.
(iii) By part (i), the set 𝛯 is convex; since for each (𝛼, 𝑚) ∈ ℝ++ × Δs(𝛷), letting 𝑙(𝐹) =

𝑚(𝛼−1𝐹) for each 𝐹 ⊆ 𝛷 gives𝛼𝑚∨ = 𝑙∨, the set 𝛯 is conical; since for each (𝛼, 𝑚) ∈ ℝ++×Δs(𝛷),
letting 𝑙(𝐹) = 𝑚(𝐹 − {𝑡1𝛺}) for each 𝐹 ⊆ 𝛷 gives 𝑚∨ + 𝑡1𝕌 = 𝑙∨, the set 𝛯 is a tube. □
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A real-valued function on 𝛷 is superlinear if it is positively homogeneous and concave.
Let 𝕍 be the set of all superlinear niveloids on 𝛷. Endow 𝕍 with the metric 𝜌 of the form

𝜌(𝑉,𝑉 ′) = max
𝜙∈𝔹

|𝑉 (𝜙) −𝑉 ′(𝜙) |,

where 𝔹 is the closed unit ball of 𝛷.

Lemma 11. The function 𝑉 ↦→ 𝑉 |𝛹 is a mixture linear isometry from 𝕍 to 𝕌.

Proof. The mixture linearity holds by construction. For each 𝑉 ∈ 𝕍 , since 𝑉 |𝛹 is continuous
and since 1 = 𝑉 (1𝛺) ≥ 𝑉 (𝜓) for each𝜓 ∈ 𝛹 , we have𝑉 |𝛹 ∈ 𝕌. Let 𝐵 = { (𝛼, 𝜓, 𝑡) ∈ ℝ+×𝛹×ℝ |
𝛼𝜓 + 𝑡1𝛺 ∈ 𝔹 }. For each (𝑉,𝑉 ′) ∈ 𝕍2,

𝜌(𝑉,𝑉 ′) = max
(𝛼,𝜓,𝑡)∈𝐵

|𝑉 (𝛼𝜓 + 𝑡1𝛺) −𝑉 ′(𝛼𝜓 + 𝑡1𝛺) | = max
(𝛼,𝜓,𝑡)∈𝐵

𝛼|𝑉 (𝜓) −𝑉 ′(𝜓) |

= max
𝜓∈𝛹

|𝑉 (𝜓) −𝑉 ′(𝜓) |,

so 𝑉 ↦→ 𝑉 |𝛹 is an isometry. □

For each 𝑀 ∈ 𝕂, the support function of 𝑀 is the real-valued function 𝐻𝑀 on 𝛷 of the
form 𝐻𝑀 (𝜙) = min𝜇∈𝑀 ⟨𝜙, 𝜇⟩.

Lemma 12.

(i) 𝑀 ↦→ 𝐻𝑀 on 𝕂 is a surjective mixture linear isometry to 𝕍 .

(ii) For each (𝑀,𝑀′) ∈ 𝕂2, it follows that 𝑀 ⊆ 𝑀′ if and only if 𝐻𝑀 ≥ 𝐻𝑀 ′ .

Proof. (i) For each 𝑀 ∈ 𝕂, since 𝐻𝑀 is superlinear by Theorem 7.51 of Aliprantis and
Border (2006) and since 𝐻𝑀 is monotone and translation equivariant by the monotonicity
and translation equivariance of ⟨·, 𝜇⟩ for each 𝜇 ∈ 𝑀 , we have 𝐻𝑀 ∈ 𝕍 . Since for each
(𝜆, (𝑀,𝑀′), 𝜙) ∈ [0, 1] × 𝕂2 × 𝛷,

𝐻𝜆𝑀+(1−𝜆)𝑀 ′ (𝜙) = min
(𝜇,𝜇′)∈𝑀×𝑀 ′

[𝜆⟨𝜙, 𝜇⟩ + (1 − 𝜆)⟨𝜙, 𝜇′⟩] = 𝜆𝐻𝑀 (𝜙) + (1 − 𝜆)𝐻𝑀 ′ (𝜙),

the function 𝑀 ↦→ 𝐻𝑀 is mixture linear; it is surjective by Theorem 7.52 of Aliprantis and
Border (2006) and Lemma 7 (i); it is an isometry by Corollary 7.59 of Aliprantis and Border
(2006).

(ii) By Theorem 2.4.14 (vi) of Zălinescu (2002). □

Recall 𝛥 = { 𝜋 ∈ Cb(𝕌)′+ | ⟨1𝕌, 𝜋⟩ = 1 }. For each 𝜋 ∈ 𝛥, define 𝜋∧ : 𝛷 → ℝ by 𝜋∧(𝜙) =

⟨δ[𝜙]∨, 𝜋⟩. By definition, for each (𝑀, 𝜋) ∈ 𝕂 × 𝛥 with 𝐻𝑀 = 𝜋∧, it follows that
∫
𝐻𝑀 d𝑚 =∫

𝜋∧ d𝑚 = ⟨𝑚∨, 𝜋⟩ for each 𝑚 ∈ Δs(𝛷). For each subset 𝛱 of 𝛥, let 𝛱∧ = { 𝜋∧ | 𝜋 ∈ 𝛱 }. Let
𝛥𝕍 = { 𝜋 ∈ 𝛥 | 𝜋∧ ∈ 𝕍 }, endowed with the weak∗ topology.

Lemma 13. The function 𝜋 ↦→ 𝜋∧ from 𝛥𝕍 to 𝕍 is surjective, mixture linear, and continuous.
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Proof. The mixture linearity follows by definition. Since Cb(𝕌)′ can be identified with the
space of normal signed charges on the Borel algebra on 𝕌 by the Riesz representation theorem
(Aliprantis and Border, 2006, Theorem 14.10) and since δ[𝑉 |𝛹 ]∧ = 𝑉 for each 𝑉 ∈ 𝕍 , the
function 𝜋 ↦→ 𝜋∧ is surjective. For the continuity, choose any net (𝜋𝑑)𝑑∈𝔻 in 𝛥𝕍 with a limit
𝜋̄ ∈ 𝛥𝕍 . We show that (𝜌(𝜋∧

𝑑
, 𝜋̄∧))𝑑∈𝔻 converges to 0. Fix any 𝜀 > 0. Let 𝐹 be a finite subset of

𝔹 whose (𝜀/3)-neighborhood includes 𝔹. By the 1-Lipschitz continuity of each member of 𝕍 ,
for each (𝜙, 𝑑) ∈ 𝔹 × 𝔻, there exists 𝜓 ∈ 𝐹 such that

|𝜋∧𝑑 (𝜙) − 𝜋̄
∧(𝜙) | ≤ |𝜋∧𝑑 (𝜙) − 𝜋

∧
𝑑 (𝜓) | + |𝜋∧𝑑 (𝜓) − 𝜋̄

∧(𝜓) | + |𝜋̄∧(𝜓) − 𝜋̄∧(𝜙) |

< |⟨δ[𝜓]∨, 𝜋𝑑 − 𝜋̄⟩| +
2
3
𝜀.

Thus, since (𝜋𝑑)𝑑∈𝔻 is eventually in the weak∗ neighborhood
⋂
𝜓∈𝐹{ 𝜋̃ ∈ 𝛥𝕍 | |⟨δ[𝜓]∨, 𝜋̃− 𝜋̄⟩| <

𝜀/3 } of 𝜋̄, the net (𝜌(𝜋∧
𝑑
, 𝜋̄∧))𝑑∈𝔻 is eventually in [−𝜀, 𝜀]. □

For each cost structure (𝕄, 𝑐), let 𝕄⋄ = { 𝜋 ∈ 𝛥 | 𝜋∧ = 𝐻𝑀 for some 𝑀 ∈ 𝕄 }, and define
𝑐⋄ : 𝕄⋄ → ℝ by 𝑐⋄(𝜋) = 𝑐(𝑀) for each (𝜋, 𝑀) ∈ 𝕄⋄ ×𝕄 with 𝜋∧ = 𝐻𝑀 .

Lemma 14. Let (𝕄, 𝑐) be a cost structure, and let𝑊 be the real-valued function on 𝛯 of the
form𝑊 (𝑚∨) = max𝑀∈𝕄(

∫
𝐻𝑀 d𝑚 − 𝑐(𝑀)).

(i) 𝑊 is a normalized convex niveloid that has a variational representation (𝕄⋄, 𝑐⋄).

(ii) If (𝕄, 𝑐) is canonical, then 𝑐⋄ =𝑊∗ |𝕄⋄ .

(iii) If (𝕄, 𝑐) is canonical, then [arg max𝑀∈𝕄(
∫
𝐻𝑀 d𝑚 − 𝑐(𝑀))]⋄ = 𝜕𝑊 (𝑚∨) ∩ 𝕄⋄ for each

𝑚 ∈ Δs(𝛷).

Proof. (i) By construction,𝑊 (𝑚∨) = max𝜋∈𝕄⋄ (⟨𝑚∨, 𝜋⟩ − 𝑐⋄(𝜋)) for each 𝑚 ∈ Δs(𝛷). Thus, by
Lemma 12 (i) and Lemma 13, (𝕄⋄, 𝑐⋄) is a variational representation of𝑊 . Thus, by Lemma 6
(ii), Lemma 8 (i), and Lemma 10 (iii), 𝑊 is a convex niveloid. Since 𝑐 is grounded, so is 𝑐⋄.
Hence,𝑊 is normalized.

(ii) Suppose that (𝕄, 𝑐) is canonical. By Lemmas 12 and 13, 𝕄⋄ and 𝑐⋄ are convex, and
for each (𝜋, 𝜋̃) ∈ (𝕄⋄)2, if ⟨𝜉, 𝜋⟩ ≥ ⟨𝜉, 𝜋̃⟩ for each 𝜉 ∈ 𝛯, then 𝑐⋄(𝜋) ≥ 𝑐⋄(𝜋̃). Thus, by part (i),
(𝕄⋄, 𝑐⋄) is a canonical variational representation of𝑊 . Hence, by Proposition 7, 𝑐⋄ =𝑊∗ |𝕄⋄ .

(iii) If (𝕄, 𝑐) is canonical, then for each𝑚 ∈ Δs(𝛷), then by part (ii) and Lemma 1 (ii) and (iii),
[arg max𝑀∈𝕄(

∫
𝐻𝑀 d𝑚 − 𝑐(𝑀))]⋄ = arg max𝜋∈𝕄⋄ (⟨𝑚∨, 𝜋⟩ − 𝑐⋄(𝜋)) = arg max𝜋∈𝕄⋄ (⟨𝑚∨, 𝜋⟩ −

𝑊∗(𝜋)) = 𝜕𝑊 (𝑚∨) ∩𝕄⋄. □

A binary relation ≽ on 𝛯 is

• 𝛷-monotone if 𝜙 ≥ 𝜓 implies δ[𝜙]∨ ≽ δ[𝜓]∨ for each (𝜙, 𝜓) ∈ 𝛷2;

• attracted to ex post randomization if δ[𝜆𝜙 + (1 − 𝜆)𝜓]∨ ≽ [𝜆δ[𝜙] + (1 − 𝜆)δ[𝜓]]∨ for
each (𝜆, (𝜙, 𝜓)) ∈ [0, 1] × 𝛷2.
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Lemma 15. Let 𝑊 be a normalized convex niveloid on 𝛯 such that ≽∗
𝑊 is 𝛷-monotone and

attracted to ex post randomization, and let 𝑐 be the extended real-valued function on 𝕂 of the
form 𝑐(𝑀) = sup𝑚∈Δs (𝛷) (

∫
𝐻𝑀 d𝑚 −𝑊 (𝑚∨)). Then, there exists a compact convex subset 𝕄∗ of

dom 𝑐 such that

(i) for each (𝑙, 𝑚) ∈ Δs(𝛷)2, it follows that 𝑙∨ ≽∗
𝑊 𝑚∨ if and only if

∫
𝐻𝑀 d𝑙 ≥

∫
𝐻𝑀 d𝑚 for

each 𝑀 ∈ 𝕄∗;

(ii) for each compact convex subset 𝕄 of 𝕂 with 𝕄∗ ⊆ 𝕄 ⊆ dom 𝑐, the pair (𝕄, 𝑐|𝕄) is a
canonical cost structure and𝑊 (𝑚∨) = max𝑀∈𝕄(

∫
𝐻𝑀 d𝑚 − 𝑐(𝑀)) for each 𝑚 ∈ Δs(𝛷).

Proof. By construction, 𝑐(𝑀) =𝑊∗(𝜋) for each (𝑀, 𝜋) ∈ 𝕂 × 𝕂⋄ with 𝐻𝑀 = 𝜋∧. By Propo-
sition 6, there exists a weak∗ compact convex subset 𝛱 of dom𝑊∗ |𝛥 such that 𝛱 is a multi-
expectation representation of ≽∗

𝑊 and (𝛱,𝑊∗ |𝛱) is a variational representation of𝑊 . Since
each member of 𝛱∧ is positively homogeneous and translation equivariant by Lemma 10 (ii)
and is monotone and concave by the 𝛷-monotonicity and attraction to ex post randomization
of ≽∗

𝑊 , we have 𝛱 ⊆ 𝛥𝕍 . Let 𝕄∗ = {𝑀 ∈ 𝕂 | 𝐻𝑀 ∈ 𝛱∧ }. By Lemma 12 (i) and Lemma 13,
𝕄∗ is nonempty, compact, and convex. Since for each 𝜋 ∈ 𝛱, there exists 𝑀 ∈ 𝕄 such that
𝐻𝑀 = 𝜋∧, we have (i) and𝑊 (𝑚∨) = max𝑀∈𝕄∗ (

∫
𝐻𝑀 d𝑚 − 𝑐(𝑀)) for each 𝑚 ∈ Δs(𝛷). Since

𝛱 ⊆ dom𝑊∗, we have 𝕄∗ ⊆ dom 𝑐.
To see (ii), choose any compact convex subset 𝕄 of 𝕂 with 𝕄∗ ⊆ 𝕄 ⊆ dom 𝑐. Then, for each

𝑚 ∈ Δs(𝛷), we have𝑊 (𝑚∨) ≤ max𝑀∈𝕄(
∫
𝐻𝑀 d𝑚 − 𝑐(𝑀)); since 𝑐(𝑀) ≥

∫
𝐻𝑀 d𝑚 −𝑊 (𝑚∨)

for each𝑀 ∈ 𝕄, we have𝑊 (𝑚∨) ≥ max𝑀∈𝕄(
∫
𝐻𝑀 d𝑚−𝑐(𝑀)). Since𝑀 ↦→

∫
𝐻𝑀 d𝑚−𝑊 (𝑚∨)

is mixture linear and continuous for each 𝑚 ∈ Δs(𝛷) by Lemma 12 (i), the function 𝑐|𝕄 is
lower semicontinuous and convex. Since𝑊∗ |𝛱 is grounded by Lemma 8 (ii), so is 𝑐|𝕄. For
each (𝑀,𝑀′) ∈ 𝕄2 with 𝑀 ⊆ 𝑀′, since 𝐻𝑀 ≥ 𝐻𝑀 ′ , we have 𝑐(𝑀) ≥ 𝑐(𝑀′). Thus, (𝕄, 𝑐) is
canonical. □

Appendix B. Proofs

B.1. Auxiliary lemmas. With an abuse of notation, identify Δs(𝑋) with { δ[𝑝] | 𝑝 ∈ Δs(𝑋) }.

Lemma 16. If ¥ satisfies regularity, indifference to mixture timing of constant acts, and inde-
pendence of constant acts, then the restriction of ¥ to Δs(𝑋) is represented by a vNM function.

Proof. Assume the axioms. Let (𝑝, 𝑞, 𝑟) ∈ Δs(𝑋)3 be such that δ[𝑝] ∼ δ[𝑞]. Seeking a contra-
diction, suppose δ[ 1

2 𝑝 +
1
2𝑟] ≻ δ[ 1

2𝑞 +
1
2𝑟]. Since indifference to mixture timing of constant

acts implies 1
2δ[𝑝] +

1
2δ[𝑟] ≻ 1

2δ[𝑞] +
1
2δ[𝑟], it follows from independence of constant acts

that δ[𝑝] = 1
2δ[𝑝] +

1
2δ[𝑝] ≻

1
2δ[𝑞] +

1
2δ[𝑝] and 1

2δ[𝑝] +
1
2δ[𝑞] ≻

1
2δ[𝑞] +

1
2δ[𝑞] = δ[𝑞]. Thus,

transitivity implies δ[𝑝] ≻ δ[𝑞], which is a contradiction. Similarly, δ[ 1
2𝑞 +

1
2𝑟] ≻ δ[ 1

2 𝑝 +
1
2𝑟]

leads to a contradiction. Hence, by completeness, δ[ 1
2 𝑝 +

1
2𝑟] ∼ δ[ 1

2𝑞 +
1
2𝑟]. Therefore, by the
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mixture space theorem (Herstein and Milnor, 1953), the restriction of¥ to Δs(𝑋) is represented
by a vNM function. □

The next is Lemma 59 of Cerreia-Vioglio et al. (2011).

Lemma 17. A nondegenerate binary relation on Δs(𝑋) represented by a vNM function 𝑢 satisfies
unboundedness if and only if 𝑢 is surjective.

Let ¥u be a binary relation on Δs(𝛷). Denote by ∼u and ≻u the symmetric and asymmetric
parts of ¥u, respectively. Let ≥FSD be the first order stochastic dominance relation on Δs(𝛷).
The relation ¥u is

• 𝛯-monotone if 𝑙∨ ≥ 𝑚∨ implies 𝑙 ¥u 𝑚 for each (𝑙, 𝑚) ∈ Δs(𝛷)2;

• ≥FSD-monotone if 𝑙 ≥FSD 𝑚 implies 𝑙 ¥u 𝑚 for each (𝑙, 𝑚) ∈ Δs(𝛷)2;

• indifferent to mixture timing of constants if 𝜅δ[𝜆𝜙 + (1 − 𝜆)𝑡1𝛺] + (1 − 𝜅)𝑚 ∼u

𝜅[𝜆δ[𝜙] + (1 − 𝜆)δ[𝑡1𝛺]] + (1 − 𝜅)𝑚 for each ((𝜅, 𝜆), 𝑚, 𝜙, 𝑡) ∈ [0, 1]2 × Δs(𝛷) × 𝛷 ×ℝ.

Lemma 18. If ¥u is transitive, ≥FSD-monotone, and indifferent to mixture timing of constants,
then it is 𝛯-monotone.

Proof. Suppose that ¥u is transitive, ≥FSD-monotone, and indifferent to mixture timing of
constants. For each ((𝜅, 𝜆), 𝑚, (𝛼, 𝛽), 𝜓, (𝑠, 𝑡)) ∈ [0, 1]2 × Δs(𝛷) ×ℝ2

+ ×𝛹 ×ℝ2 with 𝛼 ≤ 𝛽, by
indifference to mixture timing of constants,

𝜅
[
𝜆δ[𝛼𝜓 + 𝑠1𝛺] + (1 − 𝜆)δ[𝛽𝜓 + 𝑡1𝛺]

]
+ (1 − 𝜅)𝑚

= 𝜅
[
𝜆δ

[𝛼
𝛽
(𝛽𝜓 + 𝑡1𝛺) +

(
1 − 𝛼

𝛽

) 𝛽𝑠 − 𝛼𝑡
𝛽 − 𝛼 1𝛺

]
+ (1 − 𝜆)δ[𝛽𝜓 + 𝑡1𝛺]

]
+ (1 − 𝜅)𝑚

∼u 𝜅

[ [
1 − 𝜆

(
1 − 𝛼

𝛽

)]
δ[𝛽𝜓 + 𝑡1𝛺] + 𝜆

(
1 − 𝛼

𝛽

)
δ
[ 𝛽𝑠 − 𝛼𝑡
𝛽 − 𝛼 1𝛺

] ]
+ (1 − 𝜅)𝑚

∼u 𝜅δ
[
[𝜆𝛼 + (1 − 𝜆)𝛽]𝜓 + [𝜆𝑠 + (1 − 𝜆)𝑡]1𝛺

]
+ (1 − 𝜅)𝑚,

and by Lemma 10 (i) and (ii),[
𝜅
[
𝜆δ[𝛼𝜓 + 𝑠1𝛺] + (1 − 𝜆)δ[𝛽𝜓 + 𝑡1𝛺]

]
+ (1 − 𝜅)𝑚

]∨
=
[
𝜅δ

[
[𝜆𝛼 + (1 − 𝜆)𝛽]𝜓 + [𝜆𝑠 + (1 − 𝜆)𝑡]1𝛺

]
+ (1 − 𝜅)𝑚

]∨
.

Thus, for each 𝑚 ∈ Δs(𝛷), there exist a nonempty finite subset 𝛩 of𝛹 and a triplet (𝜆, 𝛼, 𝜏) ∈
ℝ𝛩

+ × ℝ𝛩
+ × ℝ𝛩 such that

∑
𝜓∈𝛩 𝜆 (𝜓) = 1, 𝑚 ∼u ∑

𝜓∈𝛩 𝜆 (𝜓)δ[𝛼(𝜓)𝜓 + 𝜏(𝜓)1𝛺], and 𝑚∨ =

[∑𝜓∈𝛩 𝜆 (𝜓)δ[𝛼(𝜓)𝜓 + 𝜏(𝜓)1𝛺]]∨; so for 𝑁 = |𝛩| + 1, again by indifference to mixture timing
of constants,

𝑚 ∼u ∑︁
𝜓∈𝛩

𝜆 (𝜓)δ[𝛼(𝜓)𝜓 + 𝜏(𝜓)1𝛺]
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∼u ∑︁
𝜓∈𝛩

𝜆 (𝜓)
[

1
𝑁
δ[𝑁𝛼(𝜓)𝜓] + 𝑁 − 1

𝑁
δ
[ 𝑁

𝑁 − 1
𝜏(𝜓)1𝛺

] ]
=

1
𝑁

∑︁
𝜓∈𝛩

𝜆 (𝜓)δ[𝑁𝛼(𝜓)𝜓] + 𝑁 − 1
𝑁

∑︁
𝜓∈𝛩

𝜆 (𝜓)δ
[ 𝑁

𝑁 − 1
𝜏(𝜓)1𝛺

]
∼u 1

𝑁

∑︁
𝜓∈𝛩

𝜆 (𝜓)δ[𝑁𝛼(𝜓)𝜓] + 𝑁 − 1
𝑁

δ
[ 𝑁

𝑁 − 1
∑︁
𝜓∈𝛩

𝜆 (𝜓)𝜏(𝜓)1𝛺
]

=
1
𝑁

∑︁
𝜓∈𝛩

𝜆 (𝜓)δ[𝑁𝛼(𝜓)𝜓] + 𝑁 − 1
𝑁

δ
[ 𝑁

𝑁 − 1
∑︁
𝜓∈𝛩

𝜆 (𝜓)𝜏(𝜓)1𝛺 + 𝑁 − 2
𝑁 − 1

0
]

∼u 1
𝑁

∑︁
𝜓∈𝛩

𝜆 (𝜓)δ[𝑁𝛼(𝜓)𝜓] + 1
𝑁
δ
[
𝑁
∑︁
𝜓∈𝛩

𝜆 (𝜓)𝜏(𝜓)1𝛺
]
+ 𝑁 − 2

𝑁
δ[0]

=
1
𝑁

∑︁
𝜓∈𝛩

[
𝜆 (𝜓)δ[𝑁𝛼(𝜓)𝜓] + (1 − 𝜆 (𝜓))δ[0]

]
+ 1
𝑁
δ
[
𝑁
∑︁
𝜓∈𝛩

𝜆 (𝜓)𝜏(𝜓)1𝛺
]

∼u 1
𝑁

[∑︁
𝜓∈𝛩

δ[𝑁𝜆 (𝜓)𝛼(𝜓)𝜓] + δ
[
𝑁
∑︁
𝜓∈𝛩

𝜆 (𝜓)𝜏(𝜓)1𝛺
] ]
,

in which case, by Lemma 10 (ii),

𝑚∨ =

[∑︁
𝜓∈𝛩

𝜆 (𝜓)δ[𝛼(𝜓)𝜓 + 𝜏(𝜓)1𝛺]
]∨

=

{
1
𝑁

[∑︁
𝜓∈𝛩

δ[𝑁𝜆 (𝜓)𝛼(𝜓)𝜓] + δ
[
𝑁
∑︁
𝜓∈𝛩

𝜆 (𝜓)𝜏(𝜓)1𝛺
] ]}∨

.

Now choose any (𝑚1, 𝑚2) ∈ Δs(𝛷)2 with 𝑚∨
1 ≥ 𝑚∨

2 . By the previous argument, there exists
a pair ⟨𝛩, ((𝛽𝑖 , 𝛾𝑖))𝑖∈{1,2}⟩ of a nonempty finite subset of𝛹 and a family of pairs of a function
from 𝛩 to ℝ+ and a real number such that for each 𝑖 ∈ {1, 2},

𝑚𝑖 ∼u 1
|𝛩| + 1

(∑︁
𝜓∈𝛩

δ[𝛽𝑖 (𝜓)𝜓] + δ[𝛾𝑖1𝛺]
)
, 𝑚∨

𝑖 =

[ 1
|𝛩| + 1

(∑︁
𝜓∈𝛩

δ[𝛽𝑖 (𝜓)𝜓] + δ[𝛾𝑖1𝛺]
)]∨

.

Since for each 𝑣 ∈ 𝕌,∑︁
𝜓∈𝛹

(𝛽1(𝜓) − 𝛽2(𝜓))𝑣(𝜓) + 𝛾1 − 𝛾2 = ( |𝛩| + 1) (𝑚∨
1 (𝑣) −𝑚∨

2 (𝑣)) ≥ 0,

we have ∑︁
𝜓∈𝛹

|𝛽1(𝜓) − 𝛽2(𝜓) | ≤ 𝛾1 − 𝛾2.

Thus, there exists a function 𝜏 : 𝛩 → ℝ such that

𝛽1(𝜓)𝜓 + 𝜏(𝜓)1𝛺 ≥ 𝛽2(𝜓)𝜓 ∀𝜓 ∈ 𝛩 and
∑︁
𝜓∈𝛩

𝜏(𝜓) ≤ 𝛾1 − 𝛾2.
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Let
𝑚̂1 =

1
|𝛩| + 1

[∑︁
𝜓∈𝛩

δ[𝛽1(𝜓)𝜓 + 𝜏(𝜓)1𝛺] + δ
[(
𝛾1 −

∑︁
𝜓∈𝛩

𝜏(𝜓)
)
1𝛺

] ]
.

Then, 𝑚̂1 ≥FSD 𝑚2. Since for each (𝑛, 𝑚, 𝜙, (𝑠, 𝑡)) ∈ ℕ × Δs(𝛷) × 𝛷 ×ℝ2,
1

𝑛 + 1
δ[𝜙] + 1

𝑛 + 1
δ[(𝑠 + 𝑡)1𝛺] +

𝑛 − 1
𝑛 + 1

𝑚

∼u 1
𝑛 + 1

(1
2
δ[2𝜙] + 1

2
δ[0]

)
+ 1
𝑛 + 1

(1
2
δ[2𝑠1𝛺] +

1
2
δ[2𝑡1𝛺]

)
+ 𝑛 − 1
𝑛 + 1

𝑚

∼u 1
𝑛 + 1

δ[𝜙 + 𝑠1𝛺] +
1

𝑛 + 1
δ[𝑡1𝛺] +

𝑛 − 1
𝑛 + 1

𝑚,

we have 𝑚̂1 ∼u 𝑚1. Hence, 𝑚1 ¥u 𝑚2 by the transitivity and ≥FSD-monotonicity of ¥u. □

The relation ¥u is

• regular if it is nondegenerate, complete, transitive, and mixture continuous, and 𝑠 > 𝑡

implies δ[𝑠1𝛺] ≻u δ[𝑡1𝛺] for each (𝑠, 𝑡) ∈ ℝ2;

• ex ante averse to randomization if 𝑙 ¥u 𝑚 implies 𝑙 ¥u 𝜆𝑙+(1−𝜆)𝑚 for each (𝜆, (𝑙, 𝑚)) ∈
[0, 1] × Δs(𝛷)2;

• independent of constants if 𝜆𝑙 + (1 − 𝜆)δ[𝑠1𝛺] ¥u 𝜆𝑚 + (1 − 𝜆)δ[𝑠1𝛺] implies 𝜆𝑙 + (1 −
𝜆)δ[𝑡1𝛺] ¥u 𝜆𝑚 + (1 − 𝜆)δ[𝑡1𝛺] for each (𝜆, (𝑙, 𝑚), (𝑠, 𝑡)) ∈ [0, 1] × Δs(𝛷)2 ×ℝ2.

Lemma 19. If ¥u is regular, ≥FSD-monotone, indifferent to mixture timing of constants, ex ante
averse to randomization, and independent of constants, then there exists a normalized convex
niveloid𝑊 on 𝛯 such that 𝑚 ↦→𝑊 (𝑚∨) represents ¥u.

Proof. Suppose that ¥u is regular, ≥FSD-monotone, indifferent to mixture timing of con-
stants, ex ante averse to randomization, and independent of constants. By Lemma 18, it
is 𝛯-monotone. By the regularity and 𝛯-monotonicity of ¥u, there exists a unique real-valued
function𝑊 on 𝛯 such that δ[𝑊 (𝑚∨)1𝛺] ∼u 𝑚 for each 𝑚 ∈ Δs(𝛷). Again by 𝛯-monotonicity,
𝑊 is monotone. By regularity,𝑊 is normalized, and 𝑚 ↦→𝑊 (𝑚∨) represents ¥u. For each
(𝜉, 𝑡) ∈ 𝛯 × ℝ, since letting 𝑠 =𝑊 (𝜉 + 𝑡1𝛺) − 𝑡 gives 1

2 (2𝑠) +
1
2 (2𝑡) =𝑊 ( 1

2 (2𝜉) +
1
2 (2𝑡)1𝛺), it

follows from the independent of constants that 𝑠 = 1
2 (2𝑠)+

1
20 =𝑊 ( 1

2 (2𝜉)+
1
20) =𝑊 (𝜉). Hence,

𝑊 is translation equivariant, so it is a niveloid by Lemma 6 (ii). By the ex ante aversion to
randomization of ¥u, the function𝑊 is quasiconvex. Therefore, applying the same argument
as in the proof of Lemma 9 of Cerreia-Vioglio et al. (2014) shows that𝑊 is convex. □

For each vNM function 𝑢 and each 𝑃 ∈ Δs(ℱ), let 𝑃𝑢 be the pushforward of 𝑃 under
𝑓 ↦→ 𝑢 ◦ 𝑓 .

Lemma 20. If 𝑢 is a surjective vNM function, then 𝑃 ↦→ 𝑃𝑢 from Δs(ℱ) to Δs(𝛷) is surjective
and mixture linear.
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Proof. Let 𝑢 be a surjective vNM function. The surjectivity follows from the surjectivity of
𝑓 ↦→ 𝑢 ◦ 𝑓 from ℱ to 𝛷. For each (𝜆, (𝑃, 𝑄), 𝛩) ∈ [0, 1] × Δs(ℱ)2 × 2𝛷, letting 𝐹 = { 𝑓 ∈ ℱ |
𝑢 ◦ 𝑓 ∈ 𝛩 } gives [𝜆𝑃 + (1 − 𝜆)𝑄]𝑢(𝛩) = [𝜆𝑃 + (1 − 𝜆)𝑄] (𝐹) = 𝜆𝑃(𝐹) + (1 − 𝜆)𝑄(𝐹) =

𝜆𝑃𝑢(𝛩) + (1 − 𝜆)𝑄𝑢(𝛩). Thus, 𝑃 ↦→ 𝑃𝑢 is mixture linear. □

For each binary relation ≽′ on Δs(ℱ), a binary relation is more indecisive than ≽′ if its
graph is included in the graph of ≽′.

Lemma 21. Let ≽ and ≽′ be binary relations on Δs(ℱ) that have compact convex multi-meu
representations 𝕄 and 𝕄′, respectively. Then, ≽ is more indecisive than ≽′ if and only if 𝕄 ⊇ 𝕄′.

Proof. The necessity of the more indecisiveness of ≽ follows by definition. For the sufficiency,
we show the contrapositive. Suppose 𝕄 ⊉ 𝕄′. Let 𝑀′ ∈ 𝕄′ \𝕄. By Lemma 11 and Lemma 12
(i), the set { 𝐻𝑀 |𝛹 | 𝑀 ∈ 𝕄 } is a compact convex subset of𝕌 that does not contain𝐻𝑀 ′ |𝛹 . Thus,
by the separation theorem (Aliprantis and Border, 2006, Corollary 5.80), there exists (𝛬, 𝑡) ∈
ca(𝛹 )×ℝ such that inf𝑀∈𝕄

∫
𝐻𝑀 |𝛹 d𝛬 > 𝑡 >

∫
𝐻𝑀 ′ |𝛹 d𝛬. Let 𝑎 = max{𝛬+(𝛹 ), 𝛬−(𝛹 )}, which

is positive. Define the Borel probability measures 𝑙 and 𝑚 on 𝛷 by

𝑙(𝛩) = 𝛬+(𝛩 ∩𝛹 )
2𝑎

+
(
1 − 𝛬+(𝛹 )

2𝑎

)
1𝛩(0),

𝑚(𝛩) = 𝛬−(𝛩 ∩𝛹 )
2𝑎

+
(
1 − 𝛬−(𝛹 )

2𝑎

)
1𝛩

( 𝑡

2𝑎 − 𝛬−(𝛹 )1𝛺
)
,

where 1𝛩 is the indicator function of 𝛩 on 𝛷 for each Borel subset 𝛩 of 𝛷. Then, for each
𝑀̃ ∈ 𝕄 ∪ {𝑀′}, by the normalizedness of 𝐻𝑀̃ ,∫

𝐻𝑀̃ d𝑙 =
∫
𝐻𝑀̃1𝛹 d𝑙 +

∫
𝐻𝑀̃1𝛹 c d𝑙 =

1
2𝑎

∫
𝐻𝑀̃ d𝛬+,∫

𝐻𝑀̃ d𝑚 =

∫
𝐻𝑀̃1𝛹 d𝑚 +

∫
𝐻𝑀̃1𝛹 c d𝑚

=
1

2𝑎

∫
𝐻𝑀̃ d𝛬− +

(
1 − 𝛬+(𝛹 )

2𝑎

)
𝑚
({ 𝑡

2𝑎 − 𝛬−(𝛹 )1𝛺
})

=
1

2𝑎

(∫
𝐻𝑀̃ d𝛬− + 𝑡

)
.

Thus,
∫
𝐻𝑀 d𝑙 >

∫
𝐻𝑀 d𝑚 for each 𝑀 ∈ 𝕄, and

∫
𝐻𝑀 ′ d𝑙 <

∫
𝐻𝑀 ′ d𝑚. Since Δs(𝛷) is dense in

the space of Borel probability measures on 𝛷 (Aliprantis and Border, 2006, Theorem 15.10), it
is without loss of generality to assume that 𝑙 and 𝑚 are finitely supported. Thus, 𝑙 ≽ 𝑚 and
𝑙 ̸≽′ 𝑚, so ≽ is not more indecisive than ≽′. □

Lemma 22. Let 𝕄 and 𝕄′ be compact convex subsets of 𝕂. Then, 𝕄 ⊵ 𝕄′ if and only if
max𝑀∈𝕄

∫
𝐻𝑀 d𝑚 ≥ max𝑀 ′∈𝕄′

∫
𝐻𝑀 ′ d𝑚 for each 𝑚 ∈ Δs(𝛷).

Proof. If 𝕄 ⊵𝕄′, then for each 𝑚 ∈ Δs(𝛷), letting 𝑀̄′ ∈ arg max𝑀 ′∈𝕄′
∫
𝐻𝑀 d𝑚 gives 𝑀̄ ⊆ 𝑀̄′

for some 𝑀̄ ∈ 𝕄, so max𝑀 ′∈𝕄′
∫
𝐻𝑀 ′ d𝑚 =

∫
𝐻𝑀̄ ′ d𝑚 ≤

∫
𝐻𝑀̄ d𝑚 ≤ max𝑀∈𝕄

∫
𝐻𝑀 d𝑚 by

Lemma 12 (ii). For the converse, we show the contrapositive. Suppose that there exists
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𝑀′ ∈ 𝕄′ such that 𝑀 ⊈ 𝑀′ for each 𝑀 ∈ 𝕄. By Lemmas 11 and 12, the set { 𝐻𝑀 |𝛹 − 𝐻𝑀 ′ |𝛹 |
𝑀 ∈ 𝕄 } is a compact convex subset of 𝕌 that is disjoint from Cb(𝛹 )+. Thus, by the separation
theorem (Aliprantis and Border, 2006, Theorem 5.79), there exists (𝛬, 𝑡) ∈ ca(𝛹 ) ×ℝ such that
infℎ∈Cb (𝛹 )+

∫
ℎd𝛬 > 𝑡 > max𝑀∈𝕄

∫
𝐻𝑀 |𝛹 d𝛬 −

∫
𝐻𝑀 ′ |𝛹 d𝛬, which implies (𝛬, 𝑡) ∈ ca(𝛹 )+ ×

(−ℝ++). Since 𝛬 ≠ 0, we have 𝛬(𝛹 ) > 0. Define the Borel probability measure 𝑚 on 𝛷 by
𝑚(𝛩) = 𝛬(𝛩 ∩ 𝛹 )/𝛬(𝛹 ). Then,

∫
𝐻𝑀 ′ d𝑚 > max𝑀∈𝕄

∫
𝐻𝑀 d𝑚. Since Δs(𝛷) is dense in the

space of Borel probability measures on 𝛷 (Aliprantis and Border, 2006, Theorem 15.10), it is
without loss of generality to assume that 𝑚 is finitely supported. □

B.2. Proof of Theorem 1. For the necessity of the axioms, suppose that ¥ has a costly ambigu-
ity perception representation ⟨𝑢, (𝕄, 𝑐)⟩. The necessity of regularity is routine. By Lemma 17,
unboundedness holds. Define𝑊 : 𝛯 → ℝ by𝑊 (𝑃∨𝑢 ) = max𝑀∈𝕄(

∫
𝐻𝑀 d𝑃𝑢 − 𝑐(𝑀)), which is

a convex niveloid by Lemma 14 (i). Since 𝑃 ↦→ 𝑃∨𝑢 is mixture linear by Lemma 10 (i) and
Lemma 20, the function 𝑃 ↦→𝑊 (𝑃∨𝑢 ) is convex. Thus, ex ante aversion to randomization is
satisfied. Since𝑊 ( [𝜆𝑃 + (1 − 𝜆)δ[𝑝]]∨𝑢 ) =𝑊 (𝜆𝑃∨𝑢 + (1 − 𝜆)𝑢(𝑝)1𝕌) =𝑊 (𝜆𝑃∨𝑢 ) + (1 − 𝜆)𝑢(𝑝)
for each (𝜆, 𝑃, 𝑝) ∈ [0, 1] × Δs(ℱ) × Δs(𝑋), independence of constant acts holds. The remained
axioms, FSD, attraction to ex post randomization, and indifference to mixture timing of constant
acts, follow from the monotonicity, concavity, and translation equivariance of the support
functions, respectively.

For the sufficiency, assume all the axioms. By Lemmas 16 and 17, the restriction of¥ to Δs(𝑋)
is represented by a surjective vNM function 𝑢. Define the relation ¥u on Δs(𝛷) by 𝑃𝑢 ¥u 𝑄𝑢 if
𝑃 ¥ 𝑄. By Lemma 20, ¥u is regular, ≥FSD-monotone, indifferent to mixture timing of constants,
ex ante averse to randomization, and independent of constants. Thus, by Lemma 19, there
exists a normalized convex niveloid𝑊 on 𝛯 such that 𝑃 ↦→𝑊 (𝑃∨𝑢 ) represents ¥. By FSD and
attraction to ex post randomization, ≽∗

𝑊 is𝛷-monotone and attracted to ex post randomization.
Hence, by Lemma 15, there exists a cost structure (𝕄, 𝑐) such that for each 𝑃 ∈ Δs(ℱ),

𝑊 (𝑃∨𝑢 ) = max
𝑀∈𝕄

(∫
𝐻𝑀 d𝑃𝑢 − 𝑐(𝑀)

)
= max

𝑀∈𝕄

[∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑃( 𝑓 ) − 𝑐(𝑀)

]
,

which shows that ⟨𝑢, (𝕄, 𝑐)⟩ is a costly ambiguity perception representation of ¥. □

B.3. Proof of Proposition 1. By Lemma 21, ¥∗ has at most one compact convex multi-meu
representation. Let ⟨𝑢, (𝕄, 𝑐)⟩ be a costly ambiguity perception representation of ¥. Define
𝑊 : 𝛯 → ℝ by 𝑊 (𝑚∨) = max𝑀∈𝕄(

∫
𝐻𝑀 d𝑚 − 𝑐(𝑀)). Then, for each (𝑃, 𝑄) ∈ Δs(ℱ)2, it

follows that 𝑃∨𝑢 ≽∗
𝑊 𝑄∨

𝑢 if and only if 𝑃 ¥∗ 𝑄. By Lemma 14 (i), 𝑊 is a normalized convex
niveloid. By the monotonicity and concavity of support functions, ≽∗

𝑊 is 𝛷-monotone and
attracted to ex post randomization. Thus, by Lemma 15, ¥∗ has a compact convex multi-meu
representation. □
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B.4. Proof of Theorem 2. (i) Suppose that ⟨𝑢, (𝕄, 𝑐)⟩ is a canonical costly ambiguity percep-
tion representation of ¥. Define𝑊 : 𝛯 → ℝ by𝑊 (𝑚∨) = max𝑀∈𝕄(

∫
𝐻𝑀 d𝑚 − 𝑐(𝑀)). Then,

𝑊 (𝑃∨𝑢 ) = 𝑢(𝑃) for each 𝑃 ∈ Δs(ℱ). Define the relation ¥′ on Δs(ℱ) by 𝑃 ¥′ 𝑄 if∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑃( 𝑓 ) ≥

∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑄( 𝑓 ) ∀𝑀 ∈ 𝕄.

For each (𝑃, 𝑄) ∈ Δs(ℱ)2, if 𝑃 ¥′ 𝑄, then for each (𝜆, 𝑅) ∈ (0, 1] × Δs(ℱ), every 𝑀̄ ∈
arg max𝑀∈𝕄{

∫
𝐻𝑀 d[𝜆𝑄 + (1 − 𝜆)𝑅]𝑢 − 𝑐(𝑀)} satisfies

𝑊 ( [𝜆𝑃 + (1 − 𝜆)𝑅]∨𝑢 ) ≥
∫
𝐻𝑀̄ d[𝜆𝑃 + (1 − 𝜆)𝑅]𝑢 − 𝑐(𝑀̄)

≥
∫
𝐻𝑀̄ d[𝜆𝑄 + (1 − 𝜆)𝑅]𝑢 − 𝑐(𝑀̄) =𝑊 ( [𝜆𝑄 + (1 − 𝜆)𝑅]∨𝑢 ),

so 𝑃 ¥∗ 𝑄. That is, ¥′ is more indecisive than ¥∗. Thus, by Lemma 21, 𝕄 ⊇ 𝕄∗. Since (𝕄, 𝑐)
is canonical, we have 𝑐⋄ =𝑊∗ |𝕄⋄ by Lemma 14 (ii). Hence, 𝑐(𝑀) = sup𝜉∈𝛯 (⟨𝜉, 𝜋⟩ −𝑊 (𝜉)) =
sup𝑚∈Δs (𝛷) (

∫
𝐻𝑀 d𝑚 −𝑊 (𝑚∨)) = 𝑐★¥,𝑢(𝑀) for each (𝑀, 𝜋) ∈ 𝕄 ×𝕄⋄ with 𝐻𝑀 = 𝜋∧. Since 𝑐 is

real-valued, we have 𝕄 ⊆ dom 𝑐★¥,𝑢.
For the converse, suppose that 𝕄∗ ⊆ 𝕄 ⊆ dom 𝑐★¥,𝑢 and 𝑐 = 𝑐★¥,𝑢 |𝕄. Define𝑊 : 𝛯 → ℝ by

𝑊 (𝑃∨𝑢 ) = 𝑢(𝑃). Then, for each (𝑃, 𝑄) ∈ Δs(ℱ)2, it follows that 𝑃∨𝑢 ≽∗
𝑊 𝑄∨

𝑢 if and only if 𝑃 ¥∗ 𝑄.
Since there exists a cost structure (𝕄̄, 𝑐) such that 𝑢(𝑃) = max𝑀∈𝕄̄(

∫
𝐻𝑀 d𝑃𝑢− 𝑐(𝑀)) for each

𝑃 ∈ Δs(ℱ), it follows from Lemma 14 (i) that𝑊 is a convex niveloid. By the monotonicity and
concavity of support functions, ≽∗

𝑊 is 𝛷-monotone and attracted to ex post randomization.
Thus, by Proposition 1 and Lemma 15, (𝕄, 𝑐) is a canonical cost structure such that 𝑢(𝑃) =
𝑊 (𝑃∨𝑢 ) = max𝑀∈𝕄(

∫
𝐻𝑀 d𝑃∨𝑢 − 𝑐(𝑀)) for each 𝑃 ∈ Δs(ℱ).

(ii) Suppose that ⟨𝑢, (𝕄, 𝑐)⟩ is a canonical costly ambiguity perception representation of
¥ such that 𝕄 is ⊇-increasing. By part (i), 𝑐 = 𝑐★¥,𝑢 |𝕄. Define 𝑐 : 𝕂 → [0,∞] by 𝑐(𝑀) = 𝑐(𝑀)
if 𝑀 ∈ 𝕄 and 𝑐(𝑀) = ∞, and define 𝑊 : 𝛯 → ℝ by 𝑊 (𝑚∨) = max𝑀∈𝕂 (

∫
𝐻𝑀 d𝑚 − 𝑐(𝑀)).

Then, by Lemmas 12 and 13 and the ⊇-increasingness of 𝕄, the pair (𝕂⋄, 𝑐⋄) is a canonical
variational representation of𝑊 . Thus, by Proposition 7, 𝑐(𝑀) = 𝑐⋄(𝜋) =𝑊∗ |𝕂⋄ (𝜋) = 𝑐★¥,𝑢(𝑀)
for each (𝑀, 𝜋) ∈ 𝕂 × 𝕂⋄ with 𝐻𝑀 = 𝜋∧. Hence, 𝕄 = dom 𝑐 = dom 𝑐★¥,𝑢.

For the converse, suppose 𝕄 = dom 𝑐★¥,𝑢 and 𝑐 = 𝑐★¥,𝑢 |𝕄. By part (i), ⟨𝑢, (𝕄, 𝑐)⟩ is a canonical
costly ambiguity perception representation of ¥. For each (𝑀,𝑀′) ∈ 𝕂2, if 𝑀 ∈ 𝕄 and
𝑀 ⊆ 𝑀′, then 𝑐(𝑀) ≥ 𝑐(𝑀′), so 𝑀′ ∈ 𝕄. Thus, (𝕄, 𝑐) is ⊇-increasing. □

B.5. Proof of Proposition 2. Let 𝑖 ∈ {1, 2}. Define𝑊𝑖 : 𝛯 → ℝby𝑊𝑖 (𝑚∨) = max𝑀∈𝕄𝑖 (
∫
𝐻𝑀 d𝑚−

𝑐𝑖 (𝑀)). For each (𝑃, 𝑄) ∈ Δs(ℱ)2, it follows from Lemma 14 (i) and (iii) that𝒞𝑖 (𝑃) ∩𝒞𝑖 (𝑄) ≠ ∅
if and only if 𝜕𝑊𝑖 (𝑃∨𝑢𝑖 ) ∩ 𝜕𝑊𝑖 (𝑄∨

𝑢𝑖
) ∩𝕄⋄

𝑖
≠ ∅, which is equivalent to𝑊𝑖 ( [𝜆𝑃 + (1 − 𝜆)𝑄]∨𝑢𝑖 ) =

𝑊𝑖 (𝜆𝑃∨𝑢𝑖 + (1− 𝜆)𝑄∨
𝑢𝑖
) = 𝜆𝑊𝑖 (𝑃∨𝑢𝑖 ) + (1− 𝜆)𝑊𝑖 (𝑄∨

𝑢𝑖
) = 𝜆𝑢𝑖 (𝑃𝑖) + (1− 𝜆)𝑢𝑖 (𝑄̄𝑖) for each 𝜆 ∈ [0, 1]

by Lemma 9 (i). Thus, the desired equivalence is obtained. □
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B.6. Proof of Proposition 3. Dm 1 is more tolerant of ambiguity than dm 2 if and only if
𝑢1 ≈ 𝑢2 and 𝑢1(𝑃1) ≥ 𝑢1(𝑃2), while the inequality is equivalent to 𝑐★¥1,𝑢1

≤ 𝑐★¥2,𝑢1
. □

B.7. Proof of Proposition 4. If dm 1 has higher filtering incentives than dm 2, then 𝑢1 ≈ 𝑢2.
Thus, assume without loss of generality 𝑢1 = 𝑢2. Let 𝑢 = 𝑢1. For each 𝑖 ∈ {1, 2}, define𝑊𝑖 : 𝛯 →
ℝ by𝑊𝑖 (𝑚∨) = max𝑀∈𝕄𝑖 (

∫
𝐻𝑀 d𝑚 − 𝑐𝑖 (𝑀)), and define𝑈𝑖 : Δs(ℱ) → ℝ by𝑈𝑖 (𝑃) =𝑊𝑖 (𝑃∨𝑢 ).

Suppose that 𝒞1(𝑃) ⊵ 𝒞2(𝑃) for each 𝑃 ∈ Δs(ℱ). By Lemma 22, for each (𝑃, 𝑄) ∈ Δs(ℱ)2,

max
𝑀∈𝒞1 (𝑃)

∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑄( 𝑓 ) ≥ max

𝑀∈𝒞2 (𝑃)

∫ (
min
𝜇∈𝑀

∫
𝑢 ◦ 𝑓 d𝜇

)
d𝑄( 𝑓 ).

Choose any (𝜆, (𝑃, 𝑄), 𝑝) ∈ [0, 1] × Δs(ℱ)2 × Δs(𝑋). Define 𝑅 : [0, 1] → Δs(ℱ) by 𝑅(𝑡) =

𝜆 [𝑡𝑃 + (1 − 𝑡)δ[𝑝]] + (1 − 𝜆)𝑄. Let 𝑃 ∈ Δs(ℱ) be such that
∫
𝐻𝑀 d𝑃𝑢 =

∫
𝐻𝑀 d𝑃𝑢 − 𝑢(𝑝)

for each 𝑀 ∈ 𝕄. For each 𝑡 ∈ [0, 1], let (𝑀̄1(𝑡), 𝑀̄2(𝑡)) ∈ 𝒞1(𝑅(𝑡)) × 𝒞2(𝑅(𝑡)) be such that∫
𝐻𝑀̄1 (𝑡) d𝑃𝑢 ≥

∫
𝐻𝑀̄2 (𝑡) d𝑃𝑢. Then, since for each 𝑖 ∈ {1, 2}, the envelope theorem (Milgrom

and Segal, 2002, Theorem 2) implies

𝑈𝑖 (𝜆𝑃 + (1 − 𝜆)𝑄) −𝑈𝑖 (𝜆δ[𝑝] + (1 − 𝜆)𝑄) =𝑈𝑖 (𝑅(1)) −𝑈𝑖 (𝑅𝑖 (0)) = 𝜆
∫ 1

0

(∫
𝐻𝑀̄𝑖 (𝑡) d𝑃𝑢

)
d𝑡,

we have𝑈1(𝜆𝑃+ (1− 𝜆)𝑄) −𝑈1(𝜆δ[𝑝] + (1− 𝜆)𝑄) ≥ 𝑈2(𝜆𝑃+ (1− 𝜆)𝑄) −𝑈2(𝜆δ[𝑝] + (1− 𝜆)𝑄).
Thus, dm 1 has higher filtering incentives than dm 2.

For the converse, suppose that dm 1 has higher filtering incentives than dm 2. Choose any
(𝑃, 𝑚) ∈ Δs(ℱ) × Δs(𝛷). Since for each 𝑖 ∈ {1, 2}, by Lemma 14 (i) and (iii) and Lemma 9 (ii),

max
𝑀∈𝒞𝑖 (𝑃)

∫
𝐻𝑀 d𝑚 = max

𝜋∈𝜕𝑊𝑖 (𝑃∨𝑢 )∩𝕄⋄
𝑖

⟨𝑚∨, 𝜋⟩ = D+
𝑚∨𝑊𝑖 (𝑃∨𝑢 ),

it suffices to show D+
𝑚∨𝑊1(𝑃∨𝑢 ) ≥ D+

𝑚∨𝑊2(𝑃∨𝑢 ) by Lemma 22. Let 𝑃 ∈ Δs(ℱ) be such that 𝑃∨𝑢 =

2𝑃∨𝑢 . For each 𝜆 ∈ (0, 1], let 𝑄̃(𝜆) ∈ Δs(ℱ) be such that 𝑄̃(𝜆)∨𝑢 = 2𝜆𝑚∨, and let 𝑝(𝜆) ∈ Δs(𝑋)
be such that 𝑢(𝑝(𝜆)) = 2(𝑊2(𝑃∨𝑢 + 𝜆𝑚∨) −𝑊2(𝑃∨𝑢 )); then, since

𝑈2

(1
2
𝑃 + 1

2
𝑄̃(𝜆)

)
−𝑈2

(1
2
𝑃 + 1

2
δ[𝑝(𝜆)]

)
=𝑊2(𝑃∨𝑢 + 𝜆𝑚∨) −𝑊2(𝑃∨𝑢 ) −

1
2
𝑢(𝑝(𝜆)) = 0,

we have

𝑊1(𝑃∨𝑢 + 𝜆𝑚∨) −𝑊1(𝑃∨𝑢 ) −
1
2
𝑢(𝑝(𝜆)) =𝑈1

(1
2
𝑃 + 1

2
𝑄̃(𝜆)

)
−𝑈1

(1
2
𝑃 + 1

2
δ[𝑝(𝜆)]

)
≥ 0.

Thus, D+
𝑚∨𝑊1(𝑃∨𝑢 ) ≥ D+

𝑚∨𝑊2(𝑃∨𝑢 ). □

B.8. Proof of Corollary 2. In each statement, the necessity of the axiom is routine. We show
only the sufficiency. Let ⟨𝑢, (𝕄, 𝑐)⟩ be a costly ambiguity perception representation of ¥. By
Proposition 1 and Theorem 2 (i), we may assume that 𝕄 is a multi-meu representation of ¥∗.
Define𝑈 : Δs(ℱ) → ℝ by𝑈 (𝑃) = max𝑀∈𝕄(

∫
𝐻𝑀 d𝑃𝑢 − 𝑐(𝑀)). Let ∼∗ be the symmetric part of

¥∗. Observe that for each (𝜆, ( 𝑓 , 𝑔)) ∈ [0, 1] ×ℱ2, if δ[𝜆 𝑓 + (1 − 𝜆)𝑔] ∼∗ 𝜆δ[ 𝑓 ] + (1 − 𝜆)δ[𝑔],
then 𝜆𝐻𝑀 (𝑢 ◦ 𝑓 ) + (1 − 𝜆)𝐻𝑀 (𝑢 ◦ 𝑔) = 𝐻𝑀 (𝜆 (𝑢 ◦ 𝑓 ) + (1 − 𝜆) (𝑢 ◦ 𝑔)) for each 𝑀 ∈ 𝕄.
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(i) Assume indifference to mixture timing of comonotonic acts. By the above observation,
for each (𝜙, 𝜓) ∈ 𝛷2 if (𝜙(𝜔) −𝜙(𝜔′)) (𝜓(𝜔) −𝜓(𝜔′)) ≥ 0 for each (𝜔, 𝜔′) ∈ 𝛺2, then 𝐻𝑀 (𝜙) +
𝐻𝑀 (𝜓) = 𝐻𝑀 (𝜙 + 𝜓) for each 𝑀 ∈ 𝕄. Thus, by the Theorem and Proposition 3 of Schmeidler
(1986), every member of 𝕄 is the core of a convex capacity.

(ii) Assume indifference to mixture timing. For each 𝑀 ∈ 𝕄, the function 𝐻𝑀 is mixture
linear by the above observation, so it is linear. Thus, by Theorem 5.54 of Aliprantis and Border
(2006), every member of 𝕄 is a singleton.

(iii) Assume strong independence of constant acts. Define 𝒞 : Δs(ℱ) ⇒ 𝕄 by 𝒞(𝑃) =

arg max𝑀∈𝕄(
∫
𝐻𝑀 d𝑃𝑢 − 𝑐(𝑀)). We show that 𝒞(𝑃) ∩ 𝑐−1({0}) ≠ ∅ for each 𝑃 ∈ Δs(ℱ), in

which case (𝑢,𝕄 ∩ 𝑐−1({0})) is a dual-self expected utility representation of ¥. Choose any
𝑃 ∈ Δs(ℱ). Let 𝑝 ∈ Δs(𝑋) be such that δ[𝑝] ∼ 𝑃, let 𝑄 = 1

2𝑃 + 1
2δ[𝑝], and let 𝑀 ∈ 𝒞(𝑄). Then,

𝑐(𝑀) ≥
∫
𝐻𝑀 d𝑃𝑢 −𝑈 (𝑃). Since 𝑃 ∼ 𝑄 by strong independence of constant acts, we have

𝑈 (𝑃) =𝑈 (𝑄) = 1
2

∫
𝐻𝑀 d𝑃𝑢 +

1
2
𝑢(𝑝) − 𝑐(𝑀) = 1

2

∫
𝐻𝑀 d𝑃𝑢 +

1
2
𝑈 (𝑃) − 𝑐(𝑀),

so 𝑐(𝑀) = (
∫
𝐻𝑀 d𝑃𝑢 − 𝑈 (𝑃))/2. Thus,

∫
𝐻𝑀 d𝑃𝑢 − 𝑈 (𝑃) = 0, which implies 𝑀 ∈ 𝒞(𝑃) ∩

𝑐−1({0}). □

B.9. Proof of Proposition 5. Assume regularity, attraction to ex post randomization, indif-
ference to mixture timing of constant acts, ex ante attraction to randomization, and strong
independence of constant acts. Choose any (𝜆, ( 𝑓 , 𝑔)) ∈ (0, 1) × ℱ2. If δ[ 𝑓 ] ¥ δ[𝑔], then
δ[𝜆 𝑓 + (1 − 𝜆)𝑔] ¥ 𝜆δ[ 𝑓 ] + (1 − 𝜆)δ[𝑔] ¥ δ[𝑔] by attraction to ex post randomization and
ex ante attraction to randomization. Also, by indifference to mixture timing of constant acts
and strong independence of constant acts, δ[ 𝑓 ] ¥ δ[𝑔] if and only if δ[𝜆 𝑓 + (1 − 𝜆)𝑝] ∼
𝜆δ[ 𝑓 ] + (1 − 𝜆)δ[𝑝] ¥ 𝜆δ[𝑔] + (1 − 𝜆)δ[𝑝] ∼ δ[𝜆𝑔 + (1 − 𝜆)𝑝] for each 𝑝 ∈ Δs(𝑋). □

Appendix C. Machina’s examples

We explore the implications of the dual-self expected utility model on the behavior in
Machina’s examples. As in Section 5, for each example, identify each (𝑖, 𝑗) with the probability
distribution over colors such that the probability of drawing blue is 𝑖 and drawing green is 𝑗.

The dual-self expected utility model can explain the pattern 𝑓6 ≻ 𝑓5 and 𝑓7 ≻ 𝑓8 in the
reflection example. For example, let 𝑀1 = {1/4} × [0, 1/2], let 𝑀2 = [0, 1/2] × {1/4}, and let
𝕄 = {𝑀1, 𝑀2}. Let𝑈 be the utility function over acts corresponding to the set 𝕄 of possible
ambiguity perceptions. Then,

𝑈 ( 𝑓5) = max
𝑘∈{1,2}

min
(𝑏,𝑔)∈𝑀𝑘

100
(1

2
+ 𝑏 + 𝑔

)
= 75, 𝑈 ( 𝑓6) = max

𝑘∈{1,2}
min

(𝑏,𝑔)∈𝑀𝑘

100
(1

2
+ 2𝑔

)
= 100,

𝑈 ( 𝑓7) = max
𝑘∈{1,2}

min
(𝑏,𝑔)∈𝑀𝑘

100
(
2𝑏 + 1

2

)
= 100, 𝑈 ( 𝑓8) = max

𝑘∈{1,2}
min

(𝑏,𝑔)∈𝑀𝑘

100
(
𝑏 + 𝑔 + 1

2

)
= 75,
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so 𝑓6 ≻ 𝑓5 and 𝑓7 ≻ 𝑓8. In this example, 𝑀1 corresponds to the filtering of ambiguity perception
only on blue balls, and 𝑀2 to green balls. Since the dm can exert filtering only either on blue
or green, the “more ambiguous” acts 𝑓5 and 𝑓8 is evaluated lower. At the same time, this
parameterization can explain the typical Ellsberg-pattern. The utility 𝑓9 and 𝑓10 of each act is
given by

𝑈 ( 𝑓9) = 100 × 1
2
= 50, 𝑈 ( 𝑓10) = max

𝑘∈{1,2}
min

(𝑏,𝑔)∈𝑀𝑘

100(𝑏 + 𝑔) = 25,

which shows 𝑓9 ≻ 𝑓10.
In contrast, it fails to accommodate 𝑓1 ≻ 𝑓2 and 𝑓4 ≻ 𝑓3 in the 50–51 example. Suppose that

¥ has a dual-self expected utility representation (𝑢,𝕄). Define auxiliary acts 𝑔, ℎ, and 𝑝 as
described in Table 4. Then,

𝑓1 =
1
3
𝑔 + 2

3
𝑝, 𝑓2 =

1
3
ℎ + 2

3
𝑝, 𝑓3 =

2
3
𝑔 + 1

3
ℎ, 𝑓4 =

1
3
𝑔 + 2

3
ℎ.

Suppose 𝑓1 ≻ 𝑓2. Since ¥ satisfies the certainty independence axiom (Chandrasekher et al.,
2022, Theorem 1), we have 𝑔 ≻ ℎ. Thus, since for each 𝜆 ∈ [0, 1],

𝑈 (𝜆𝑔 + (1 − 𝜆)ℎ) = max
𝑀∈𝕄

min
𝜇∈𝑀

[
𝜆

∫
𝑢 ◦ 𝑔 d𝜇 + (1 − 𝜆)

∫
𝑢 ◦ ℎ d𝜇

]
= max

𝑀∈𝕄
min
𝜇∈𝑀

[
𝜆
(
300 × 50

101

)
+ (1 − 𝜆)

∫
𝑢 ◦ ℎ d𝜇

]
= 𝜆

(
300 × 50

101

)
+ (1 − 𝜆) max

𝑀∈𝕄
min
𝜇∈𝑀

∫
𝑢 ◦ ℎ d𝜇 = 𝜆𝑈 (𝑔) + (1 − 𝜆)𝑈 (ℎ),

we have 𝑓3 ≻ 𝑓4.

50 balls 51 balls
Red Blue Green Purple

𝑔 300 300 0 0
ℎ 300 0 300 0
𝑝 150 150 150 150

Table 4. Auxiliary acts.
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